CIM models for capabilities of Grid Edge Devices and EV as DERs

Discussion with reference to IEEE 1547, IEC 61850-7-420, IEEE 2030.5, IEC 63584 (OCPP)

Tom Berry

Event:CIM UML Feature ProposalsDate:08 January 2024Location: Remote

Document for discussion Not intended for publication

Diagrams reproduced with the permission of UCAlug

Or GridOptimize

IEC TC 69 JWG 15 : Design the information modelling for information exchange with EV charging management systems

TC 57 WG 21 : resource modelling for generic Grid Edge Devices for flexibility services

Various standards address information exchange with remote devices

- IEEE 1547
- IEEE 2030.5
- IEC 61850 models defined in part 7-420
- Mappings to IEEE 1815.2, Modbus (Sunspec alliance)

Context – Example for discussions in Europe

Other protocols may be used in larger sites such as public, fleet, ...

Existing CIM Models – (different views)

Historical

• **IEC 61968-5 Metering package** EndDeviceGroup class to manage groups of EndDevices. Smart Inverters in the DER context, are considered types of EndDevices

Specialized

• IEC 61970-302 IEEE1547Dynamics package for dynamics analysis of one or a few DER

To harmonize & extend

- IEC 62746-4 RegisteredDistributedResource
- IEC 61970-301 Conducting Equipment part of wires model for network analysis

In progress

• Asset - with reference to an Asset Type based on make, model version

Requirements for resource capabilities

For operational planning of flexible resources

- Assets = installed capability per resource
 - Per physical energy connection
 - Per aggregated resource

For analysis

- Real-time & forecast values within ranges supported by devices
- Operational functional parameters per device
 - More complex rules for aggregation / publication of settings

Categories of data

(ordered by fast to slow frequency of updates)

IEEE 1547 categories

- Monitoring & measurements
- Operational functions parameters
 and controls
- Configuration / Operating limits
- Nameplate = design ratings

Resource capabilities – multiple versions!

• From grid operator for Point of Connection

static (as installed)

dynamic = as communicated

- From Charging Park, Charging Zone capabilities dynamic due to maintenance & faults
- From EVSE

static = maybe from asset catalog of product types per manufacturer dynamic due to maintenance & faults

• From EV that is currently connected

dynamic = communicated by ISO 15118

- As designed
- Actual
- Forecast [0..N]

Proposal

Define rating class to allow multiple instances

- E.g. used in different contexts
- E.g. used by different levels: EVSE, ChargingStation, other aggegrations

Similar concept can be applied to operational functions

Object Model Challenges

- Define a set of classes to hold the parameters for each function
 Usable for all use cases
 analysis (WG13)
 operation scheduling (WG21)
 real-time exchanges (WG14 replace IEC 61968-5)
- Define a CIM style naming convention for the attributes With mapping to other protocols

Examples of data objects

• ...

Reminder: categories

- Nameplate = design ratings
- Configuration / Operating limits
- Operational functions parameters
- Monitoring & measurements

static

infrequent changes (day, hour)
static or infrequent update
dynamic (fast change)

Static (nameplate) design ratings

IEEE 1547 Description

Nameplate Active Generation Power Rating at Unity Power Factor Nameplate Active Charging Power Rating at Unity Power Factor Nameplate Reactive Supply (Injection) Power Rating Nameplate Reactive Absorption Power Rating Nameplate Apparent Generation Power Rating Nameplate Apparent Charging Power Rating

EC 61850-7-420 Naming	CIM properties
DGEN.WMaxRtg	maxP
DSTO.ChaWMaxRtg	minP
DGEN.IvarMaxRtg	maxQ
DGEN.AvarMaxRtg	minQ
DGEN.VAMaxRtg	ratedS
DSTO.ChaVAMaxRtg	

Aggregation of ratings (assuming a common point of connection to the grid)

P,Q,S	= addition
V, f	= copy

Configuration / Operating limits (could change per day, hour)

IEEE 1547 Description

Maximum Active Generation Power	١
Maximum Active Charging Power	١
Maximum Reactive Injection Power	V
Maximum Reactive Absorption Power	V
Maximum Apparent Generation Power	V
Maximum Apparent Charging Power	V

IEC 61850-7-420 Naming

V	DGEN.WMax
V	DSTO.ChaWMax
/Ar	DGEN.IvarMax
/Ar	DGEN.AvarMax
Ά	DGEN.VAMax
Ά	DSTO.ChaVAMax

Aggregation of ratings (assuming a common point of connection to the grid)

P,Q,S	= addition
V, f	= copy

Todo: extra classes for real-time information exchanges

For new ratings class

Operational functions parameters

Many functions – for example

Supports Active Power Limit Mode Supports Charge/Discharge Mode Supports Frequency-Watt Mode Supports Volt-VAr Control Mode

DWMX.	Active Power Limit
DWGC.	Set Active Power
DHFW.	Freq-Watt (droop)
DVVR.	Volt-Var

Each with their own parameters: e.g. DVVR

Voltage-Reactive Power (Volt-VAr) Function	IEC 61850 Data Object	Clarification and Additional Test Instructions
Voltage-Reactive Power Mode Enable	DVVR.ModEna	
VRef Reference voltage	DVVR.VRefSet	
Autonomous VRef adjustment enable	DVVR.VRefAdjEna	
VRef adjustment time constant	DVVR.VRefTmms	
V/Q Curve Points	DVVR.VVArCrvDel	Curve of volt-var points using delta voltage between nominal and point
Open Loop Response Time	DVVR.OpnLoopMax	Time to ramp up to 90% of the new reactive power target in response to the change in voltage

Monitoring & measurements

IEEE 1547 Description	IEC 61850-7-420 Naming
Active Power	DECP.MMXU.TotW
Reactive Power	DECP.MMXU.TotVAr
Voltage(s)	DECP.MMXU.PhV.phsA.mag, .phsB.mag, .phsC.mag
Frequency	DECP.MMXU.Hz
Operational State	DGEN.DERState
Connection Status	DGEN.DERState.1
Alarm Status	CALH.GrAIm
Operational State of Charge	DSTO.UseSocPct

Reminder: Object Model Challenges

- Define a set of classes to hold the parameters for each function Usable for all use cases analysis (WG13) operation scheduling (WG21) real-time exchanges (WG14 - replace IEC 61968-5)
- Define a CIM style naming convention for the attributes With mapping to other protocols

IOT based protocols have various naming

conventions

from OCPP 2.1

references

SAE J3072-2021 Interconnection Requirements for Onboard, Grid Support Inverter Systems

2.80. ReactivePowerParamsType

Class

ReactivePowerParamsType is used by: Common:DERCurveType

Table 280. Comparing terminology across standards (based on Table C6 of [RefJ3072])

IEEE 1547-2018	IEC 61850	IEEE 2030.5-2018	OCPP
Mode/Function	LN	DERControl	controlType
Constant Power Factor	DFPF	opModFixedPFInject: Excit	FixedPFInject
Voltage - Reactive Power	DVVR	opModVoltVar: Curve	VoltVar
Active Power - Reactive Power	DWVR	opModWattVar: Curve	WattVar
Constant Reactive Power	DVAR	opModFixedVar: FixedVar	FixedVar
Voltage - Active Power	DVWC	opModVoltWatt: Curve	VoltWatt
High Voltage Trip Curve	DHVT	opModHVRTMustTrip: Curve	HVMustTrip
Low Voltage Trip Curve	DLVT	opModLVRTMustTrip: Curve	LVMustTrip
High Frequency Trip Curve	DHFT	opModHFRTMustTrip: Curve	HFMustTrip
Low Frequency Trip Curve	DLFT	opModLFRTMustTrip: Curve	LFMustTrip
Frequency-Droop (HF)	DHFW	opModFreqDroop	FreqDroop
Frequency-Droop (LF)	DLFW	opModFreqDroop	FreqDroop
Enter Service	DCTE	DefaultDERControl: setES	EnterService
Cease to Energize and Trip	DCTE	opModEnergize ChargingProfile	
Limit Active Power	DWMX	opModMaxLimW: PerCent LimitMaxDischarge	
NA	DTCD	opModFixedW: SignedPerCent ChargingProfile	
NA	DWGC	opModFixedW: SignedPerCent	ChargingProfile

Field Name	Field Type	Card.	Description
vRef	decimal	01	Optional. Only for VoltVar curve: The nominal ac voltage (rms) adjustment to the voltage curve points for Volt-Var curves (percentage).
autonomousVRefEnable	boolean	01	Optional. Only for VoltVar: Enable/disable autonomous VRef adjustment
autonomousVRefTimeCons tant	decimal	01	Optional. Only for VoltVar: Adjustment range for VRef time constant

EV + EVSE Settings

- working proposal within CIM group discussing DER
- To be mapped to IEC 61850
- Power limits should be upper and lower limits
- To add settings to show
- gridFormingCapability / Mode
- How to handle regional specific rules for grid forming ?
- Maybe different settings for blackStartCapability / Mode

Grid-Market-Enterprise Harmonization

History

IEC 61968-5 Metering package

EndDeviceGroup class to manage groups of EndDevices. Smart Inverters in the DER context, are considered types of EndDevices

To be deprecated – replaced by newer models from IEC 62746-4

Specialized

IEC 61970-302 IEEE1547Dynamics package for dynamics analysis of one or a few DER

Not considered today

IEC 62746-4

Objective: energy scheduling with demand response programs

Generic model for aggregation

Limited description of capabilities Linked to Location Linked to PNode May be better to link to UsagePoint

Conducting Equipment

Existing model – CIM 17

PowerElectronicsConnection

- ratings

RegulatingControl

- control parameters
- restricted set of control modes

Conducting Equipment

Proposal – CIM 18 RegulatingControl replaced by generic PowerManager class

Linked to one or more control functions with various parameters

(similar concept as IEEE1457Dynamics)

CIM extensions for electric vehicle charging

• As presented in June 2024

Charging Station

physical equipment consisting of one or more EV supply equipment managing the energy transfer to and from EVs. [IEC 63382-1]

Charging Park

geographical area that encloses one or more charging stations with one operator [From : IEC 63110-1 and ISO]

Charging Zone

Power management concept representing a group of one or more charging stations within a particular charging park (typically with a relationship with the electrical arrangement)

Electric Vehicle Supply Equipment

EVSE

equipment or a combination of equipment, providing dedicated functions to supply electric energy from a fixed electrical installation or supply network to an EV for the purpose of charging and discharging

[SOURCE: IEC 61851-1:2017, 3.1.1, modified – The words "and discharging" have been added to the definition, and the examples have been removed.]

[IEC 63110-1] = to be used by IEC 63382

Background: definitions from OCPP

OCPP-2.0.1_part1_architecture_topology.pdf

CSMS EVSE can have 1 active Connectorat a specific Charging Station **Charging Station** time Connector Connector EVSE O EVSE O EVSE can have 🗅 Connector 🛏 Connector multipleConnectors Connector Connector Charging Station can EVSE O EVSE O _____ have multiple EVSE(s) Connector Connector

Charging Station is the physical system where EVs can be charged.

A Charging Station can have one or more EVSEs (Electric Vehicle Supply Equipment).

An EVSE is considered as a part of the Charging Station that can deliver energy to one EV at a time

EVSE as **DER**

An EVSE is a special type of PowerElectronicsConnection

It will have ratings that depend on the connected EV

The control functions may have settings

- Fixed by grid codes
- Communicated from the DSO via the CSMS

To do : add EVSE type information

Ratings for EVSE + EV – based on CIM 17 (2024)

class EVSE_EV_Ratings1

Notes:

Modelling concepts that extend the utility control center Common Information Model (CIM)

As used for utility planning and markets.

Many of properties have equivalents in IEC 61850 models.

Mapping them to IEC 61850 models will be done later.

Power Limiting

Notes:

Diagram shows how power limits = an operating envelope could be associated with the EVSE

These diagrams show the basic framework considering active power.

For EV as DER in some places like California, there could be 30-40 parameters (as per IEEE 1547)

For model inspiration

See 15118-20

SAE J3072

IEC 63110 UML model

• • •

Need to add a property to indicate the capability

GridForming vs GridFollowing

Information exchanges for fleet recharge with incentives

1. Inform / Incentivise:

FO provides to CSMS

Import = charging
Import = chargingprice / energy schedule (no constraints = conventional tariffs)
price / energy schedule (optional, soft power limit, encouraged by lower price)
price / energy schedule (feed-in tariff)

DSO may provide mandatory

Import limit power schedule (hard limit) Export limit power schedule (hard limit)

EV -> CS -> CSMS supplies aggregated constraints

EV constraints

Required charge state at end of session

2. Plan / Schedule (e.g. price driven self-schedule)

CSMS plans / executes [dis]charging sessions per EVSE + EV CSMS reports aggregated plan for all EVSE+EV to FO

3. Monitoring / Reporting phase:

Actual power and energy schedule Import / export transition event times using phases with terms from IEC 62746

Schedules = regular by hour, 15 min Limits could have irregular time periods