[image: 090407_entose_logo_4c]European Network of
Transmission System Operators
for Electricity

XXX IEC:200X	– 45 –	XXX CEI:200X

[image: 090407_entose_logo_4c]Steady State Hypothesis Schedule Profile Specification

European Network of
Transmission System Operators for Electricity

STEADY STATE HYPOTHESIS SCHEDULE PROFILE SPECIFICATION
2024-04-09
DRAFT DOCUMENT – FOR REVIEW
VERSION 1.0.0-BETA
[bookmark: _Toc506831072][bookmark: _Toc163565018]Copyright notice:
Copyright © ENTSO-E. All Rights Reserved.
This document and its whole translations may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, except for literal and whole translation into languages other than English and under all circumstances, the copyright notice or references to ENTSO-E may not be removed.
This document and the information contained herein is provided on an "as is" basis.
ENTSO-E DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
This document is maintained by the ENTSO-E CIM WG. Comments or remarks are to be provided at cim@entsoe.eu
NOTE CONCERNING WORDING USED IN THIS DOCUMENT
The force of the following words is modified by the requirement level of the document in which they are used.
SHALL: This word, or the terms “REQUIRED” or “MUST”, means that the definition is an absolute requirement of the specification.
SHALL NOT: This phrase, or the phrase “MUST NOT”, means that the definition is an absolute prohibition of the specification.
SHOULD: This word, or the adjective “RECOMMENDED”, means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.
SHOULD NOT: This phrase, or the phrase “NOT RECOMMENDED”, means that there may exist valid reasons in particular circumstances when the particular behaviour is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behaviour described with this label.
MAY: This word, or the adjective “OPTIONAL”, means that an item is truly optional.

[bookmark: _Toc506831073][bookmark: _Toc163565019]Revision History
	Version
	Date
	Paragraph
	Comments

	1.0.0-alpha
	2024-03-20
	
	For CIM WG review.

	1.0.0-beta
	2024-04-08
	
	For StG Strategy review.

[bookmark: _Toc506831074][bookmark: _Toc163565020]CONTENTS
Copyright notice:	2
Revision History	3
CONTENTS	4
1	Introduction	14
2	Application profile specification	14
2.1	Version information	14
2.2	Constraints naming convention	14
2.3	Profile constraints	15
2.4	Metadata	17
2.4.1	Constraints	18
2.4.2	Reference metadata	18
3	Package SteadyStateHypothesisScheduleProfile	18
3.1	General	18
3.2	(NC) InServiceRegularSchedule	19
3.3	(abstract) Equipment root class	20
3.4	(NC) ControlAreaRegularSchedule	20
3.5	(abstract) ControlArea root class	21
3.6	(NC) SynchronousMachineRegularSchedule	21
3.7	(abstract) SynchronousMachine root class	22
3.8	(NC) AsynchronousMachineRegularSchedule	22
3.9	(abstract) AsynchronousMachine root class	23
3.10	(NC) ExternalNetworkInjectionRegularSchedule	23
3.11	(abstract) ExternalNetworkInjection root class	24
3.12	(abstract) IdentifiedObject root class	24
3.13	(abstract,NC) BaseTimeSeries	25
3.14	Season	25
3.15	(NC) HourPattern	26
3.16	(abstract,NC) BaseRegularIntervalSchedule	26
3.17	(NC) HourPeriod root class	27
3.18	(NC) BaseIrregularTimeSeries	27
3.19	(NC) BaseTimeSeriesKind enumeration	27
3.20	(NC) TimeSeriesInterpolationKind enumeration	28
3.21	(NC) RegulatingControlRegularSchedule	28
3.22	(abstract) RegulatingControl root class	29
3.23	(NC) TapChangerControlRegularSchedule	30
3.24	(abstract) TapChangerControl root class	31
3.25	(NC) EnergyConnectionRegularSchedule	31
3.26	(abstract) EnergyConnection root class	32
3.27	(NC) TapRegularSchedule	32
3.28	(abstract) TapChanger root class	33
3.29	(NC) SwitchRegularSchedule	33
3.30	(abstract) Switch root class	34
3.31	(abstract,NC) ACDCConverterRegularSchedule	34
3.32	(NC) VsConverterRegularSchedule	35
3.33	(NC) CsConverterRegularSchedule	36
3.34	(abstract) VsConverter root class	37
3.35	(abstract) CsConverter root class	38
3.36	(NC) EquivalentInjectionRegularSchedule	38
3.37	(abstract) EquivalentInjection root class	39
3.38	(NC) EquivalentInjectionSchedule	39
3.39	(NC) EquivalentInjectionTimePoint root class	39
3.40	(NC) EnergyConnectionSchedule	40
3.41	(NC) EnergyConnectionTimePoint root class	41
3.42	(NC) TapSchedule	41
3.43	(NC) TapScheduleTimePoint root class	42
3.44	(NC) RegulatingControlSchedule	42
3.45	(NC) RegulatingControlTimePoint root class	43
3.46	(NC) TapChangerControlSchedule	43
3.47	(NC) VsConverterSchedule	44
3.48	(abstract,NC) ACDCTimePoint root class	45
3.49	(NC) VsConverterTimePoint	45
3.50	(NC) CsConverterTimePoint	46
3.51	(NC) CsConverterSchedule	47
3.52	(NC) SwitchSchedule	47
3.53	(NC) SwitchTimePoint root class	48
3.54	(NC) InServiceSchedule	48
3.55	(NC) InServiceTimePoint root class	49
3.56	(NC) ControlAreaSchedule	49
3.57	(NC) ControlAreaTimePoint root class	50
3.58	(NC) SynchronousMachineSchedule	50
3.59	(NC) SynchronousMachineTimePoint root class	51
3.60	(NC) AsynchronousMachineSchedule	51
3.61	(NC) AsynchronousMachineTimePoint root class	52
3.62	(NC) ExternalNetworkInjectionSchedule	52
3.63	(NC) ExternalNetworkInjectionTimePoint root class	53
3.64	(NC) BatteryUnitSchedule	53
3.65	(NC) BatteryUnitTimePoint root class	54
3.66	(abstract) BatteryUnit root class	54
3.67	(NC) VoltageLimitSchedule	54
3.68	(abstract) VoltageLimit root class	55
3.69	(NC) VoltageLimitTimePoint root class	55
3.70	(NC) ActivePowerLimitSchedule	56
3.71	(abstract) ActivePowerLimit root class	56
3.72	(NC) ActivePowerLimitTimePoint root class	56
3.73	(NC) ApparentPowerLimitSchedule	57
3.74	(abstract) ApparentPowerLimit root class	57
3.75	(NC) ApparentPowerLimitTimePoint root class	57
3.76	(NC) CurrentLimitSchedule	58
3.77	(abstract) CurrentLimit root class	58
3.78	(NC) CurrentLimitTimePoint root class	58
3.79	(NC) ShuntCompensatorSchedule	58
3.80	(NC) ShuntCompensatorTimePoint root class	59
3.81	(abstract) ShuntCompensator root class	60
3.82	(NC) StaticVarCompensatorSchedule	60
3.83	(NC) StaticVarCompensatorTimePoint root class	60
3.84	(abstract) StaticVarCompensator root class	61
3.85	(NC) GeneratingUnitSchedule	61
3.86	(NC) GeneratingUnitTimePoint root class	62
3.87	(abstract) GeneratingUnit root class	62
3.88	MonthDay primitive	62
3.89	ActivePower datatype	62
3.90	Float primitive	63
3.91	UnitMultiplier enumeration	63
3.92	UnitSymbol enumeration	63
3.93	ReactivePower datatype	64
3.94	Voltage datatype	64
3.95	DateTime primitive	65
3.96	ApparentPower datatype	65
3.97	AsynchronousMachineKind enumeration	65
3.98	(NC) DayOfWeekKind enumeration	65
3.99	Integer primitive	66
3.100	BatteryStateKind enumeration	66
3.101	RealEnergy datatype	66
3.102	CsOperatingModeKind enumeration	66
3.103	CsPpccControlKind enumeration	66
3.104	AngleDegrees datatype	67
3.105	CurrentFlow datatype	67
3.106	Boolean primitive	67
3.107	(NC) PeakKind enumeration	67
3.108	(NC) EnergyDemandKind enumeration	67
3.109	String primitive	68
3.110	Time primitive	68
3.111	SynchronousMachineOperatingMode enumeration	68
3.112	PU datatype	68
3.113	Resistance datatype	68
3.114	VsPpccControlKind enumeration	69
3.115	VsQpccControlKind enumeration	69
3.116	PerCent datatype	70
Annex A (informative): Sample data	71
A.1	General	71
A.2	Sample instance data	71

List of figures
Figure 1 – Class diagram SteadyStateHypothesisScheduleProfile::IrregularSchedule	18
Figure 2 – Class diagram SteadyStateHypothesisScheduleProfile::RegularSchedule	19
Figure 3 – Class diagram SteadyStateHypothesisScheduleProfile::Core	19

List of tables
Table 1 – Attributes of SteadyStateHypothesisScheduleProfile::InServiceRegularSchedule	19
Table 2 – Association ends of SteadyStateHypothesisScheduleProfile::InServiceRegularSchedule with other classes	20
Table 3 – Attributes of SteadyStateHypothesisScheduleProfile::ControlAreaRegularSchedule	20
Table 4 – Association ends of SteadyStateHypothesisScheduleProfile::ControlAreaRegularSchedule with other classes	21
Table 5 – Attributes of SteadyStateHypothesisScheduleProfile::SynchronousMachineRegularSchedule	22
Table 6 – Association ends of SteadyStateHypothesisScheduleProfile::SynchronousMachineRegularSchedule with other classes	22
Table 7 – Attributes of SteadyStateHypothesisScheduleProfile::AsynchronousMachineRegularSchedule	23
Table 8 – Association ends of SteadyStateHypothesisScheduleProfile::AsynchronousMachineRegularSchedule with other classes	23
Table 9 – Attributes of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionRegularSchedule	23
Table 10 – Association ends of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionRegularSchedule with other classes	24
Table 11 – Attributes of SteadyStateHypothesisScheduleProfile::IdentifiedObject	25
Table 12 – Attributes of SteadyStateHypothesisScheduleProfile::BaseTimeSeries	25
Table 13 – Attributes of SteadyStateHypothesisScheduleProfile::Season	25
Table 14 – Attributes of SteadyStateHypothesisScheduleProfile::HourPattern	26
Table 15 – Attributes of SteadyStateHypothesisScheduleProfile::BaseRegularIntervalSchedule	26
Table 16 – Association ends of SteadyStateHypothesisScheduleProfile::BaseRegularIntervalSchedule with other classes	26
Table 17 – Attributes of SteadyStateHypothesisScheduleProfile::HourPeriod	27
Table 18 – Association ends of SteadyStateHypothesisScheduleProfile::HourPeriod with other classes	27
Table 19 – Attributes of SteadyStateHypothesisScheduleProfile::BaseIrregularTimeSeries	27
Table 20 – Literals of SteadyStateHypothesisScheduleProfile::BaseTimeSeriesKind	28
Table 21 – Literals of SteadyStateHypothesisScheduleProfile::TimeSeriesInterpolationKind	28
Table 22 – Attributes of SteadyStateHypothesisScheduleProfile::RegulatingControlRegularSchedule	28
Table 23 – Association ends of SteadyStateHypothesisScheduleProfile::RegulatingControlRegularSchedule with other classes	29
Table 24 – Attributes of SteadyStateHypothesisScheduleProfile::TapChangerControlRegularSchedule	30
Table 25 – Association ends of SteadyStateHypothesisScheduleProfile::TapChangerControlRegularSchedule with other classes	30
Table 26 – Attributes of SteadyStateHypothesisScheduleProfile::EnergyConnectionRegularSchedule	31
Table 27 – Association ends of SteadyStateHypothesisScheduleProfile::EnergyConnectionRegularSchedule with other classes	31
Table 28 – Attributes of SteadyStateHypothesisScheduleProfile::TapRegularSchedule	32
Table 29 – Association ends of SteadyStateHypothesisScheduleProfile::TapRegularSchedule with other classes	33
Table 30 – Attributes of SteadyStateHypothesisScheduleProfile::SwitchRegularSchedule	33
Table 31 – Association ends of SteadyStateHypothesisScheduleProfile::SwitchRegularSchedule with other classes	34
Table 32 – Attributes of SteadyStateHypothesisScheduleProfile::ACDCConverterRegularSchedule	34
Table 33 – Association ends of SteadyStateHypothesisScheduleProfile::ACDCConverterRegularSchedule with other classes	35
Table 34 – Attributes of SteadyStateHypothesisScheduleProfile::VsConverterRegularSchedule	35
Table 35 – Association ends of SteadyStateHypothesisScheduleProfile::VsConverterRegularSchedule with other classes	36
Table 36 – Attributes of SteadyStateHypothesisScheduleProfile::CsConverterRegularSchedule	36
Table 37 – Association ends of SteadyStateHypothesisScheduleProfile::CsConverterRegularSchedule with other classes	37
Table 38 – Attributes of SteadyStateHypothesisScheduleProfile::EquivalentInjectionRegularSchedule	38
Table 39 – Association ends of SteadyStateHypothesisScheduleProfile::EquivalentInjectionRegularSchedule with other classes	39
Table 40 – Attributes of SteadyStateHypothesisScheduleProfile::EquivalentInjectionSchedule	39
Table 41 – Association ends of SteadyStateHypothesisScheduleProfile::EquivalentInjectionSchedule with other classes	39
Table 42 – Attributes of SteadyStateHypothesisScheduleProfile::EquivalentInjectionTimePoint	40
Table 43 – Association ends of SteadyStateHypothesisScheduleProfile::EquivalentInjectionTimePoint with other classes	40
Table 44 – Attributes of SteadyStateHypothesisScheduleProfile::EnergyConnectionSchedule	40
Table 45 – Association ends of SteadyStateHypothesisScheduleProfile::EnergyConnectionSchedule with other classes	41
Table 46 – Attributes of SteadyStateHypothesisScheduleProfile::EnergyConnectionTimePoint	41
Table 47 – Association ends of SteadyStateHypothesisScheduleProfile::EnergyConnectionTimePoint with other classes	41
Table 48 – Attributes of SteadyStateHypothesisScheduleProfile::TapSchedule	41
Table 49 – Association ends of SteadyStateHypothesisScheduleProfile::TapSchedule with other classes	42
Table 50 – Attributes of SteadyStateHypothesisScheduleProfile::TapScheduleTimePoint	42
Table 51 – Association ends of SteadyStateHypothesisScheduleProfile::TapScheduleTimePoint with other classes	42
Table 52 – Attributes of SteadyStateHypothesisScheduleProfile::RegulatingControlSchedule	42
Table 53 – Association ends of SteadyStateHypothesisScheduleProfile::RegulatingControlSchedule with other classes	43
Table 54 – Attributes of SteadyStateHypothesisScheduleProfile::RegulatingControlTimePoint	43
Table 55 – Association ends of SteadyStateHypothesisScheduleProfile::RegulatingControlTimePoint with other classes	43
Table 56 – Attributes of SteadyStateHypothesisScheduleProfile::TapChangerControlSchedule	44
Table 57 – Association ends of SteadyStateHypothesisScheduleProfile::TapChangerControlSchedule with other classes	44
Table 58 – Attributes of SteadyStateHypothesisScheduleProfile::VsConverterSchedule	44
Table 59 – Association ends of SteadyStateHypothesisScheduleProfile::VsConverterSchedule with other classes	44
Table 60 – Attributes of SteadyStateHypothesisScheduleProfile::ACDCTimePoint	45
Table 61 – Attributes of SteadyStateHypothesisScheduleProfile::VsConverterTimePoint	45
Table 62 – Association ends of SteadyStateHypothesisScheduleProfile::VsConverterTimePoint with other classes	46
Table 63 – Attributes of SteadyStateHypothesisScheduleProfile::CsConverterTimePoint	46
Table 64 – Association ends of SteadyStateHypothesisScheduleProfile::CsConverterTimePoint with other classes	47
Table 65 – Attributes of SteadyStateHypothesisScheduleProfile::CsConverterSchedule	47
Table 66 – Association ends of SteadyStateHypothesisScheduleProfile::CsConverterSchedule with other classes	47
Table 67 – Attributes of SteadyStateHypothesisScheduleProfile::SwitchSchedule	47
Table 68 – Association ends of SteadyStateHypothesisScheduleProfile::SwitchSchedule with other classes	48
Table 69 – Attributes of SteadyStateHypothesisScheduleProfile::SwitchTimePoint	48
Table 70 – Association ends of SteadyStateHypothesisScheduleProfile::SwitchTimePoint with other classes	48
Table 71 – Attributes of SteadyStateHypothesisScheduleProfile::InServiceSchedule	48
Table 72 – Association ends of SteadyStateHypothesisScheduleProfile::InServiceSchedule with other classes	49
Table 73 – Attributes of SteadyStateHypothesisScheduleProfile::InServiceTimePoint	49
Table 74 – Association ends of SteadyStateHypothesisScheduleProfile::InServiceTimePoint with other classes	49
Table 75 – Attributes of SteadyStateHypothesisScheduleProfile::ControlAreaSchedule	49
Table 76 – Association ends of SteadyStateHypothesisScheduleProfile::ControlAreaSchedule with other classes	50
Table 77 – Attributes of SteadyStateHypothesisScheduleProfile::ControlAreaTimePoint	50
Table 78 – Association ends of SteadyStateHypothesisScheduleProfile::ControlAreaTimePoint with other classes	50
Table 79 – Attributes of SteadyStateHypothesisScheduleProfile::SynchronousMachineSchedule	50
Table 80 – Association ends of SteadyStateHypothesisScheduleProfile::SynchronousMachineSchedule with other classes	51
Table 81 – Attributes of SteadyStateHypothesisScheduleProfile::SynchronousMachineTimePoint	51
Table 82 – Association ends of SteadyStateHypothesisScheduleProfile::SynchronousMachineTimePoint with other classes	51
Table 83 – Attributes of SteadyStateHypothesisScheduleProfile::AsynchronousMachineSchedule	51
Table 84 – Association ends of SteadyStateHypothesisScheduleProfile::AsynchronousMachineSchedule with other classes	52
Table 85 – Attributes of SteadyStateHypothesisScheduleProfile::AsynchronousMachineTimePoint	52
Table 86 – Association ends of SteadyStateHypothesisScheduleProfile::AsynchronousMachineTimePoint with other classes	52
Table 87 – Attributes of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionSchedule	52
Table 88 – Association ends of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionSchedule with other classes	53
Table 89 – Attributes of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionTimePoint	53
Table 90 – Association ends of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionTimePoint with other classes	53
Table 91 – Attributes of SteadyStateHypothesisScheduleProfile::BatteryUnitSchedule	54
Table 92 – Association ends of SteadyStateHypothesisScheduleProfile::BatteryUnitSchedule with other classes	54
Table 93 – Attributes of SteadyStateHypothesisScheduleProfile::BatteryUnitTimePoint	54
Table 94 – Association ends of SteadyStateHypothesisScheduleProfile::BatteryUnitTimePoint with other classes	54
Table 95 – Attributes of SteadyStateHypothesisScheduleProfile::VoltageLimitSchedule	55
Table 96 – Association ends of SteadyStateHypothesisScheduleProfile::VoltageLimitSchedule with other classes	55
Table 97 – Attributes of SteadyStateHypothesisScheduleProfile::VoltageLimitTimePoint	55
Table 98 – Association ends of SteadyStateHypothesisScheduleProfile::VoltageLimitTimePoint with other classes	55
Table 99 – Attributes of SteadyStateHypothesisScheduleProfile::ActivePowerLimitSchedule	56
Table 100 – Association ends of SteadyStateHypothesisScheduleProfile::ActivePowerLimitSchedule with other classes	56
Table 101 – Attributes of SteadyStateHypothesisScheduleProfile::ActivePowerLimitTimePoint	56
Table 102 – Association ends of SteadyStateHypothesisScheduleProfile::ActivePowerLimitTimePoint with other classes	56
Table 103 – Attributes of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitSchedule	57
Table 104 – Association ends of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitSchedule with other classes	57
Table 105 – Attributes of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitTimePoint	57
Table 106 – Association ends of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitTimePoint with other classes	57
Table 107 – Attributes of SteadyStateHypothesisScheduleProfile::CurrentLimitSchedule	58
Table 108 – Association ends of SteadyStateHypothesisScheduleProfile::CurrentLimitSchedule with other classes	58
Table 109 – Attributes of SteadyStateHypothesisScheduleProfile::CurrentLimitTimePoint	58
Table 110 – Association ends of SteadyStateHypothesisScheduleProfile::CurrentLimitTimePoint with other classes	58
Table 111 – Attributes of SteadyStateHypothesisScheduleProfile::ShuntCompensatorSchedule	59
Table 112 – Association ends of SteadyStateHypothesisScheduleProfile::ShuntCompensatorSchedule with other classes	59
Table 113 – Attributes of SteadyStateHypothesisScheduleProfile::ShuntCompensatorTimePoint	59
Table 114 – Association ends of SteadyStateHypothesisScheduleProfile::ShuntCompensatorTimePoint with other classes	60
Table 115 – Attributes of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorSchedule	60
Table 116 – Association ends of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorSchedule with other classes	60
Table 117 – Attributes of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorTimePoint	61
Table 118 – Association ends of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorTimePoint with other classes	61
Table 119 – Attributes of SteadyStateHypothesisScheduleProfile::GeneratingUnitSchedule	61
Table 120 – Association ends of SteadyStateHypothesisScheduleProfile::GeneratingUnitSchedule with other classes	62
Table 121 – Attributes of SteadyStateHypothesisScheduleProfile::GeneratingUnitTimePoint	62
Table 122 – Association ends of SteadyStateHypothesisScheduleProfile::GeneratingUnitTimePoint with other classes	62
Table 123 – Attributes of SteadyStateHypothesisScheduleProfile::ActivePower	62
Table 124 – Literals of SteadyStateHypothesisScheduleProfile::UnitMultiplier	63
Table 125 – Literals of SteadyStateHypothesisScheduleProfile::UnitSymbol	64
Table 126 – Attributes of SteadyStateHypothesisScheduleProfile::ReactivePower	64
Table 127 – Attributes of SteadyStateHypothesisScheduleProfile::Voltage	64
Table 128 – Attributes of SteadyStateHypothesisScheduleProfile::ApparentPower	65
Table 129 – Literals of SteadyStateHypothesisScheduleProfile::AsynchronousMachineKind	65
Table 130 – Literals of SteadyStateHypothesisScheduleProfile::DayOfWeekKind	65
Table 131 – Literals of SteadyStateHypothesisScheduleProfile::BatteryStateKind	66
Table 132 – Attributes of SteadyStateHypothesisScheduleProfile::RealEnergy	66
Table 133 – Literals of SteadyStateHypothesisScheduleProfile::CsOperatingModeKind	66
Table 134 – Literals of SteadyStateHypothesisScheduleProfile::CsPpccControlKind	67
Table 135 – Attributes of SteadyStateHypothesisScheduleProfile::AngleDegrees	67
Table 136 – Attributes of SteadyStateHypothesisScheduleProfile::CurrentFlow	67
Table 137 – Literals of SteadyStateHypothesisScheduleProfile::PeakKind	67
Table 138 – Literals of SteadyStateHypothesisScheduleProfile::EnergyDemandKind	68
Table 139 – Literals of SteadyStateHypothesisScheduleProfile::SynchronousMachineOperatingMode	68
Table 140 – Attributes of SteadyStateHypothesisScheduleProfile::PU	68
Table 141 – Attributes of SteadyStateHypothesisScheduleProfile::Resistance	68
Table 142 – Literals of SteadyStateHypothesisScheduleProfile::VsPpccControlKind	69
Table 143 – Literals of SteadyStateHypothesisScheduleProfile::VsQpccControlKind	69
Table 144 – Attributes of SteadyStateHypothesisScheduleProfile::PerCent	70

[bookmark: _Toc163565021]Introduction
The steady state hypothesis schedule profile enables an exchange of schedules of operating point (steady state hypothesis).
[bookmark: _Toc163565022]Application profile specification
[bookmark: _Toc163565023]Version information
The content is generated from UML model file CIM100_CGMES31v01_501-20v02_NC23v61_MM10v01.eap.
This edition is based on the IEC 61970 UML version ‘IEC61970CIM17v40’, dated ‘2020-08-24’.
· Title:		Steady State Hypothesis Schedule Vocabulary
· Keyword:	SHS
· Description:	This vocabulary is describing the steady state hypothesis schedule.
· Version IRI:	https://ap.cim4.eu/SteadyStateHypothesisSchedule/1.0
· Version info:	1.0.0
· Prior version:	
· Conforms to:	urn:iso:std:iec:61970-600-2:ed-1|urn:iso:std:iec:61970-301:ed-7:amd1|file://iec61970cim17v40_iec61968cim13v13a_iec62325cim03v17a.eap|urn:iso:std:iec:61970-401:draft:ed-1|urn:iso:std:iec:61970-501:draft:ed-2|file://CIM100_CGMES31v01_501-20v02_NC23v61_MM10v01.eap
· Identifier:	urn:uuid:0d815deb-9968-4c6f-85d7-503d49e0b81f

[bookmark: _Hlk65574257][bookmark: _Toc163565024]Constraints naming convention
The naming of the rules shall not be used for machine processing. The rule names are just a string. The naming convention of the constraints is as follows.
“{rule.Type}:{rule.Standard}:{rule.Profile}:{rule.Property}:{rule.Name}”
where
rule.Type: C – for constraint; R – for requirement
rule.Standard: the number of the standard e.g. 301 for 61970-301, 456 for 61970-456, 13 for 61968-13. 61970-600 specific constraints refer to 600 although they are related to one or combination of the 61970-450 series profiles. For NC profiles, NC is used.
rule.Profile: the abbreviation of the profile, e.g. TP for Topology profile. If set to “ALL” the constraint is applicable to all IEC 61970-600 profiles.
rule.Property: for UML classes, the name of the class, for attributes and associations, the name of the class and attribute or association end, e.g. EnergyConsumer, IdentifiedObject.name, etc. If set to “NA” the property is not applicable to a specific UML element.
rule.Name: the name of the rule. It is unique for the same property.
Example: C:600:ALL:IdentifiedObject.name:stringLength
[bookmark: _Toc163565025]Profile constraints
This clause defines requirements and constraints that shall be fulfilled by applications that conform to this document.
This document is the master for rules and constraints tagged "NC". For the sake of self-containment, the list below also includes a copy of the relevant rules from IEC 61970-452, tagged "452".
· [bookmark: _Hlk37831215]C:452:ALL:NA:datatypes
According to 61970-501, datatypes are not exchanged in the instance data. The UnitMultiplier is 1 in cases none value is specified in the profile.
· R:452:ALL:NA:exchange
Optional and required attributes and associations must be imported and exported if they are in the model file prior to import.
· R:452:ALL:NA:exchange1
If an optional attribute does not exist in the imported file, it does not have to be exported in case exactly the same data set is exported, i.e. the tool is not obliged to automatically provide this attribute. If the export is resulting from an action by the user performed after the import, e.g. data processing or model update the export can contain optional attributes.
· [bookmark: _Hlk37831448]R:452:ALL:NA:exchange2
In most of the profiles the selection of optional and required attributes is made so as to ensure a minimum set of required attributes without which the exchange does not fulfil its basic purpose. Business processes governing different exchanges can require mandatory exchange of certain optional attributes or associations. Optional and required attributes and associations shall therefore be supported by applications which claim conformance with certain functionalities of the IEC 61970-452. This provides flexibility for the business processes to adapt to different business requirements and base the exchanges on IEC 61970-452 compliant applications.
· R:452:ALL:NA:exchange3
An exporter may, at his or her discretion, produce a serialization containing additional class data described by the CIM Schema but not required by this document provided these data adhere to the conventions established in Clause 5.
· R:452:ALL:NA:exchange4
From the standpoint of the model import used by a data recipient, the document describes a subset of the CIM that importing software shall be able to interpret in order to import exported models. Data providers are free to exceed the minimum requirements described herein as long as their resulting data files are compliant with the CIM Schema and the conventions established in Clause 5. The document, therefore, describes additional classes and class data that, although not required, exporters will, in all likelihood, choose to include in their data files. The additional classes and data are labelled as required (cardinality 1..1) or as optional (cardinality 0..1) to distinguish them from their required counterparts. Please note, however, that data importers could potentially receive data containing instances of any and all classes described by the CIM Schema.
· R:452:ALL:NA:cardinality
The cardinality defined in the CIM model shall be followed, unless a more restrictive cardinality is explicitly defined in this document. For instance, the cardinality on the association between VoltageLevel and BaseVoltage indicates that a VoltageLevel shall be associated with one and only one BaseVoltage, but a BaseVoltage can be associated with zero to many VoltageLevels.
· R:452:ALL:NA:associations
Associations between classes referenced in this document and classes not referenced here are not required regardless of cardinality.
· R:452:ALL:IdentifiedObject.name:rule
The attribute “name” inherited by many classes from the abstract class IdentifiedObject is not required to be unique. It must be a human readable identifier without additional embedded information that would need to be parsed. The attribute is used for purposes such as User Interface and data exchange debugging. The MRID defined in the data exchange format is the only unique and persistent identifier used for this data exchange. The attribute IdentifiedObject.name is, however, always required for CoreEquipment profile and Short Circuit profile.
· R:452:ALL:IdentifiedObject.description:rule
The attribute “description” inherited by many classes from the abstract class IdentifiedObject must contain human readable text without additional embedded information that would need to be parsed.
· R:452:ALL:NA:uniqueIdentifier
All IdentifiedObject-s shall have a persistent and globally unique identifier (Master Resource Identifier - mRID).
· R:452:ALL:NA:unitMultiplier
For exchange of attributes defined using CIM Data Types (ActivePower, Susceptance, etc.) a unit multiplier of 1 is used if the UnitMultiplier specified in this document is “none”.
· C:452:ALL:IdentifiedObject.name:stringLength
The string IdentifiedObject.name has a maximum of 128 characters.
· [bookmark: _Hlk38296322]C:452:ALL:IdentifiedObject.description:stringLength
The string IdentifiedObject.description is maximum 256 characters.
· C:452:ALL:NA:float
An attribute that is defined as float (e.g. has a type Float or a type which is a Datatype with .value attribute of type Float) shall support ISO/IEC 60559:2020 for floating-point arithmetic using single precision floating point. A single precision float supports 7 significant digits where the significant digits are described as an integer, or a decimal number with 6 decimal digits. Two float values are equal when the significant with 7 digits are identical, e.g. 1234567 is equal 1.234567E6 and so are 1.2345678 and 1.234567E0.
· R:NC:ALL:NA:serialization
The profiles are defined in the EnterpriseArchitect application and have multiple artifacts that describe them. The main artifacts are:
1) the EAP file (EnterpriseArchitect project file),
2) the profiles’ specification document and
3) the application profiles (RDFS and SHACL).
Due to the complexity of the profiles, there are various cross profile associations that, from profiling and profile maintenance point of view, it is not practical to include the complete inheritance structure in all profiles. If this is done the documentation provided for all profiles would also include duplicated information on the description of classes defined in other profiles. The following cases are often observed in profiles:
· Case 1: An association end refers to an abstract class
· Case 2: An abstract class (stereotyped with “Description”) has an association (direction to another class)
· Case 3: An abstract class (not stereotyped with “Description”) has an association (direction to another class)
· Case 4: An abstract class has attributes and subclasses are not in the profile
In all cases, the datasets shall only include the subtypes of the abstract classes with the related properties (i.e. association or attributes) defined in the profile. The information is taken from either canonical model or the profiles where complete (expected) inheritance structure for the related abstract class is described. SHACL based constraints include constraints only for the concrete classes that are subtypes of the abstract class in the profile, and this can be used to inform which are the concrete classes expected in a dataset that conforms to this profile.
It should be taken into account that this approach deviates from MVAL5 (IEC 61970-600-1:2021), which creates multiple inheritance at serialization. For instance, with this more explicit exchange the serialization of the association between abstract class Equipment and abstract class Circuit for a PowerTransformer will be serialized as follows:
· for association
 <cim:PowerTransformer rdf:about="_c328f787-bc17-47ad-a59f-6ba7133340d0">
 <nc:Equipment.Circut rdf:resource="#_9ced16ac-d076-4ef9-a241-a998a579e77b"/>
 </cim:PowerTransformer>
· for attribute
 <cim:ACLineSegment rdf:about="_04f681aa-6999-4fb3-9775-acaa5eb7ceff">
 <cim:Equipment.inService>true</cim:Equipment.inService>
 </cim:ACLineSegment>
The usage of rdf:ID or rdf:about depends on the stereotype of the class. rdf:about is used if the class has the stereotype “Description”.
An example of not allowed serialization, as the Equipment is an abstract class
<cim:Equipment rdf:about="_c328f787-bc17-47ad-a59f-6ba7133340d0">
 <nc:Equipment.Circut rdf:resource="#_9ced16ac-d076-4ef9-a241-a998a579e77b"/>
 </cim:Equipment>
[bookmark: _Toc163565026]Metadata
[bookmark: _Hlk65574353][bookmark: _Hlk65319744]ENTSO-E agreed to extend the header and metadata definitions by IEC 61970-552 Ed2. This new header definitions rely on W3C recommendations which are used worldwide and are positively recognized by the European Commission. The new definitions of the header mainly use Provenance ontology (PROV-O), Time Ontology and Data Catalog Vocabulary (DCAT). The global new header applicable for this profile is included in the metadata and document header specification document.
The header vocabulary contains all attributes defined in IEC 61970-552. This is done only for the purpose of having one vocabulary for header and to ensure transition for data exchanges that are using IEC 61970-552:2016 header. This profile does not use IEC 61970-552:2016 header attributes and relies only on the extended attributes.
[bookmark: _Toc163565027]Constraints
The identification of the constraints related to the metadata follows the same convention for naming of the constraints as for profile constraints.
· R:NC:ALL:wasAttributedTo:usage
The prov:wasAttributedTo should normally be the “X” EIC code of the actor or their URI (prov:Agent).

[bookmark: _Toc163565028]Reference metadata
[bookmark: _Hlk65319766]The header defined for this profile requires availability of a set of reference metadata. For instance, the attribute prov:wasGeneratedBy requires a reference to an activity which produced the model or the related process. The activities are defined as reference metadata and their identifiers are referenced from the header to enable the receiving entity to retrieve the “static” (reference) information that is not modified frequently. This approach imposes a requirement that both the sending entity and the receiving entity have access to a unique version of the reference metadata. Therefore, each business process shall define which reference metadata is used and where it is located.
[bookmark: _Toc163565029]Package SteadyStateHypothesisScheduleProfile
[bookmark: _Toc163565030]General
This package contains steady state hypothesis schedule profile.
[image:]
[bookmark: _Ref163564558][bookmark: _Toc163565149]Figure 1 – Class diagram SteadyStateHypothesisScheduleProfile::IrregularSchedule
Figure 1: The diagram shows classes related to the irregular schedule.
[image:]
[bookmark: _Ref163564559][bookmark: _Toc163565150]Figure 2 – Class diagram SteadyStateHypothesisScheduleProfile::RegularSchedule
Figure 2: The diagram shows classes related to the regular schedule.
[image:]
[bookmark: _Ref163564560][bookmark: _Toc163565151]Figure 3 – Class diagram SteadyStateHypothesisScheduleProfile::Core
Figure 3: The diagram shows classes from Base CIM used in the profile.
[bookmark: UML4371][bookmark: _Toc163565031](NC) InServiceRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for elements having in service.
Table 1 shows all attributes of InServiceRegularSchedule.
[bookmark: _Ref163564561][bookmark: _Toc163565152]Table 1 – Attributes of SteadyStateHypothesisScheduleProfile::InServiceRegularSchedule
	name
	mult
	type
	description

	inService
	1..1
	Boolean
	(NC) Specifies the availability of the equipment. True means the equipment is available for topology processing, which determines if the equipment is energized or not. False means that the equipment is treated by network applications as if it is not in the model.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 2 shows all association ends of InServiceRegularSchedule with other classes.
[bookmark: _Ref163564562][bookmark: _Toc163565153]Table 2 – Association ends of SteadyStateHypothesisScheduleProfile::InServiceRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	Equipment
	0..1
	Equipment
	(NC) Equipment which has InServiceRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1516][bookmark: _Toc163565032](abstract) Equipment root class
The parts of a power system that are physical devices, electronic or mechanical.
[bookmark: UML4372][bookmark: _Toc163565033](NC) ControlAreaRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for control area.
Table 3 shows all attributes of ControlAreaRegularSchedule.
[bookmark: _Ref163564563][bookmark: _Toc163565154]Table 3 – Attributes of SteadyStateHypothesisScheduleProfile::ControlAreaRegularSchedule
	name
	mult
	type
	description

	netInterchange
	1..1
	ActivePower
	(NC) The specified positive net interchange into the control area, i.e. positive sign means flow into the area.

	pTolerance
	0..1
	ActivePower
	(NC) Active power net interchange tolerance. The attribute shall be a positive value or zero.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 4 shows all association ends of ControlAreaRegularSchedule with other classes.
[bookmark: _Ref163564564][bookmark: _Toc163565155]Table 4 – Association ends of SteadyStateHypothesisScheduleProfile::ControlAreaRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	ControlArea
	0..1
	ControlArea
	(NC) ControlArea which has ControlAreaRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1517][bookmark: _Toc163565034](abstract) ControlArea root class
A control area is a grouping of generating units and/or loads and a cutset of tie lines (as terminals) which may be used for a variety of purposes including automatic generation control, power flow solution area interchange control specification, and input to load forecasting. All generation and load within the area defined by the terminals on the border are considered in the area interchange control. Note that any number of overlapping control area specifications can be superimposed on the physical model. The following general principles apply to ControlArea:
1. The control area orientation for net interchange is positive for an import, negative for an export.
2. The control area net interchange is determined by summing flows in Terminals. The Terminals are identified by creating a set of TieFlow objects associated with a ControlArea object. Each TieFlow object identifies one Terminal.
3. In a single network model, a tie between two control areas must be modelled in both control area specifications, such that the two representations of the tie flow sum to zero.
4. The normal orientation of Terminal flow is positive for flow into the conducting equipment that owns the Terminal. (i.e. flow from a bus into a device is positive.) However, the orientation of each flow in the control area specification must align with the control area convention, i.e. import is positive. If the orientation of the Terminal flow referenced by a TieFlow is positive into the control area, then this is confirmed by setting TieFlow.positiveFlowIn flag TRUE. If not, the orientation must be reversed by setting the TieFlow.positiveFlowIn flag FALSE.
[bookmark: UML4373][bookmark: _Toc163565035](NC) SynchronousMachineRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for synchronous machine.
Table 5 shows all attributes of SynchronousMachineRegularSchedule.
[bookmark: _Ref163564565][bookmark: _Toc163565156]Table 5 – Attributes of SteadyStateHypothesisScheduleProfile::SynchronousMachineRegularSchedule
	name
	mult
	type
	description

	operatingMode
	1..1
	SynchronousMachineOperatingMode
	(NC) Current mode of operation.

	referencePriority
	1..1
	Integer
	(NC) Priority of unit for use as powerflow voltage phase angle reference bus selection. 0 = don t care (default) 1 = highest priority. 2 is less than 1 and so on.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 6 shows all association ends of SynchronousMachineRegularSchedule with other classes.
[bookmark: _Ref163564566][bookmark: _Toc163565157]Table 6 – Association ends of SteadyStateHypothesisScheduleProfile::SynchronousMachineRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	SynchronousMachine
	0..1
	SynchronousMachine
	(NC) SynchronousMachine which has SynchronousMachineRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1518][bookmark: _Toc163565036](abstract) SynchronousMachine root class
An electromechanical device that operates with shaft rotating synchronously with the network. It is a single machine operating either as a generator or synchronous condenser or pump.
[bookmark: UML4374][bookmark: _Toc163565037](NC) AsynchronousMachineRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for asynchronous machine.
Table 7 shows all attributes of AsynchronousMachineRegularSchedule.
[bookmark: _Ref163564567][bookmark: _Toc163565158]Table 7 – Attributes of SteadyStateHypothesisScheduleProfile::AsynchronousMachineRegularSchedule
	name
	mult
	type
	description

	asynchronousMachineType
	1..1
	AsynchronousMachineKind
	(NC) Indicates the type of Asynchronous Machine (motor or generator).

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 8 shows all association ends of AsynchronousMachineRegularSchedule with other classes.
[bookmark: _Ref163564568][bookmark: _Toc163565159]Table 8 – Association ends of SteadyStateHypothesisScheduleProfile::AsynchronousMachineRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	AsynchronousMachine
	0..1
	AsynchronousMachine
	(NC) AsynchronousMachine which has AsynchronousMachineRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1519][bookmark: _Toc163565038](abstract) AsynchronousMachine root class
A rotating machine whose shaft rotates asynchronously with the electrical field. Also known as an induction machine with no external connection to the rotor windings, e.g. squirrel-cage induction machine.
[bookmark: UML4375][bookmark: _Toc163565039](NC) ExternalNetworkInjectionRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for external network injection.
Table 9 shows all attributes of ExternalNetworkInjectionRegularSchedule.
[bookmark: _Ref163564569][bookmark: _Toc163565160]Table 9 – Attributes of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionRegularSchedule
	name
	mult
	type
	description

	referencePriority
	1..1
	Integer
	(NC) Priority of unit for use as powerflow voltage phase angle reference bus selection. 0 = don t care (default) 1 = highest priority. 2 is less than 1 and so on.

	p
	1..1
	ActivePower
	(NC) Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

	q
	1..1
	ReactivePower
	(NC) Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 10 shows all association ends of ExternalNetworkInjectionRegularSchedule with other classes.
[bookmark: _Ref163564570][bookmark: _Toc163565161]Table 10 – Association ends of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	ExternalNetworkinjection
	0..1
	ExternalNetworkInjection
	(NC) External network injection which has ExternalNetworkinjectionRegularSchedule

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1520][bookmark: _Toc163565040](abstract) ExternalNetworkInjection root class
This class represents the external network and it is used for IEC 60909 calculations.
[bookmark: UML1521][bookmark: _Toc163565041](abstract) IdentifiedObject root class
This is a root class to provide common identification for all classes needing identification and naming attributes.
Table 11 shows all attributes of IdentifiedObject.
[bookmark: _Ref163564571][bookmark: _Toc163565162]Table 11 – Attributes of SteadyStateHypothesisScheduleProfile::IdentifiedObject
	name
	mult
	type
	description

	description
	0..1
	String
	The description is a free human readable text describing or naming the object. It may be non unique and may not correlate to a naming hierarchy.

	mRID
	1..1
	String
	Master resource identifier issued by a model authority. The mRID is unique within an exchange context. Global uniqueness is easily achieved by using a UUID, as specified in RFC 4122, for the mRID. The use of UUID is strongly recommended.
For CIMXML data files in RDF syntax conforming to IEC 61970-552, the mRID is mapped to rdf:ID or rdf:about attributes that identify CIM object elements.

	name
	1..1
	String
	The name is any free human readable and possibly non unique text naming the object.

[bookmark: UML4369][bookmark: _Toc163565042](abstract,NC) BaseTimeSeries
Inheritance path = IdentifiedObject
Time series of values at points in time.
Table 12 shows all attributes of BaseTimeSeries.
[bookmark: _Ref163564572][bookmark: _Toc163565163]Table 12 – Attributes of SteadyStateHypothesisScheduleProfile::BaseTimeSeries
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) Kind of interpolation done between time point.

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) Kind of base time series.

	generatedAtTime
	0..1
	DateTime
	(NC) The time this time series (entity) come to existents and available for use.

	percentile
	0..1
	Integer
	(NC) The percentile is a number where a certain percentage of scores/ranking/values of a sample fall below that number. This is a way for expressing uncertainty in the number provided.

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

[bookmark: UML4407][bookmark: _Toc163565043]Season
Inheritance path = IdentifiedObject
A specified time period of the year.
Table 13 shows all attributes of Season.
[bookmark: _Ref163564573][bookmark: _Toc163565164]Table 13 – Attributes of SteadyStateHypothesisScheduleProfile::Season
	name
	mult
	type
	description

	endDate
	1..1
	MonthDay
	Date season ends.

	startDate
	1..1
	MonthDay
	Date season starts.

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

[bookmark: UML4408][bookmark: _Toc163565044](NC) HourPattern
Inheritance path = IdentifiedObject
A period of the day with a given pattern.
Table 14 shows all attributes of HourPattern.
[bookmark: _Ref163564574][bookmark: _Toc163565165]Table 14 – Attributes of SteadyStateHypothesisScheduleProfile::HourPattern
	name
	mult
	type
	description

	peakKind
	0..1
	PeakKind
	(NC) Kind of peak for a given hour pattern.

	energyDemandKind
	0..1
	EnergyDemandKind
	(NC)

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

[bookmark: UML4370][bookmark: _Toc163565045](abstract,NC) BaseRegularIntervalSchedule
Inheritance path = BaseTimeSeries : IdentifiedObject
Time series that has regular points in time.
Table 15 shows all attributes of BaseRegularIntervalSchedule.
[bookmark: _Ref163564575][bookmark: _Toc163565166]Table 15 – Attributes of SteadyStateHypothesisScheduleProfile::BaseRegularIntervalSchedule
	name
	mult
	type
	description

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) Day of the week for which the schedule is valid for.

	intervalStartTime
	0..1
	DateTime
	(NC) Interval start time for which the schedule is valid for.

	intervalEndTime
	0..1
	DateTime
	(NC) Interval end time for which the schedule is valid for.

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 16 shows all association ends of BaseRegularIntervalSchedule with other classes.
[bookmark: _Ref163564576][bookmark: _Toc163565167]Table 16 – Association ends of SteadyStateHypothesisScheduleProfile::BaseRegularIntervalSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	Season
	0..1
	Season
	(NC) Season associated with a base regular interval schedule.

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) HourPattern that has base regular interval schedule.

[bookmark: UML1522][bookmark: _Toc163565046](NC) HourPeriod root class

Table 17 shows all attributes of HourPeriod.
[bookmark: _Ref163564577][bookmark: _Toc163565168]Table 17 – Attributes of SteadyStateHypothesisScheduleProfile::HourPeriod
	name
	mult
	type
	description

	mRID
	1..1
	String
	(NC) Master resource identifier issued by a model authority. The mRID is unique within an exchange context. Global uniqueness is easily achieved by using a UUID, as specified in RFC 4122, for the mRID. The use of UUID is strongly recommended.
For CIMXML data files in RDF syntax conforming to IEC 61970-552, the mRID is mapped to rdf:ID or rdf:about attributes that identify CIM object elements.

	startTime
	1..1
	Time
	(NC)

	endTime
	1..1
	Time
	(NC)

Table 18 shows all association ends of HourPeriod with other classes.
[bookmark: _Ref163564578][bookmark: _Toc163565169]Table 18 – Association ends of SteadyStateHypothesisScheduleProfile::HourPeriod with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	HourPattern
	1..1
	HourPattern
	(NC) HourPattern which has some hour periods.

[bookmark: UML4385][bookmark: _Toc163565047](NC) BaseIrregularTimeSeries
Inheritance path = BaseTimeSeries : IdentifiedObject
Time series that has irregular points in time.
Table 19 shows all attributes of BaseIrregularTimeSeries.
[bookmark: _Ref163564579][bookmark: _Toc163565170]Table 19 – Attributes of SteadyStateHypothesisScheduleProfile::BaseIrregularTimeSeries
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

[bookmark: UML1523][bookmark: _Toc163565048](NC) BaseTimeSeriesKind enumeration
Kind of time series.
Table 20 shows all literals of BaseTimeSeriesKind.
[bookmark: _Ref163564580][bookmark: _Toc163565171]Table 20 – Literals of SteadyStateHypothesisScheduleProfile::BaseTimeSeriesKind
	literal
	value
	description

	[bookmark: UML10358]forecast
	
	Time series is forecast data. The values represent the result of scientific predictions based on historical time stamped data.

	[bookmark: UML10359]hindcast
	
	Time series is hindcast data. The value represent probable past (historic) condition given by calculation done using actual values. For instance, determine the among of wind based on the energy produced by wind. However, hindcast is typical the result of a simulated forecasts for historical periods.

	[bookmark: UML10360]schedule
	
	Time series is schedule data. The values represent the result of a committed and plan forecast data that has been through a quality control and could incur penalty when not followed.

	[bookmark: UML10361]actual
	
	Time series is actual data. The values represent measured or calculated values that represent the actual behaviour.

[bookmark: UML1524][bookmark: _Toc163565049](NC) TimeSeriesInterpolationKind enumeration
Kinds of interpolation of values between two time point.
Table 21 shows all literals of TimeSeriesInterpolationKind.
[bookmark: _Ref163564581][bookmark: _Toc163565172]Table 21 – Literals of SteadyStateHypothesisScheduleProfile::TimeSeriesInterpolationKind
	literal
	value
	description

	[bookmark: UML10362]none
	
	No interpolation is applied.

	[bookmark: UML10363]zero
	
	The value between two time points is set to zero.

	[bookmark: UML10364]previous
	
	The value between two time points is set to previous value.

	[bookmark: UML10365]next
	
	The value between two time points is set to next value.

	[bookmark: UML10366]linear
	
	Linear interpolation is applied for values between two time points.

[bookmark: UML4376][bookmark: _Toc163565050](NC) RegulatingControlRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for regulating control.
Table 22 shows all attributes of RegulatingControlRegularSchedule.
[bookmark: _Ref163564582][bookmark: _Toc163565173]Table 22 – Attributes of SteadyStateHypothesisScheduleProfile::RegulatingControlRegularSchedule
	name
	mult
	type
	description

	targetValue
	1..1
	Float
	(NC) The target value specified for case input. This value can be used for the target value without the use of schedules. The value has the units appropriate to the mode attribute.

	targetValueUnitMultiplier
	1..1
	UnitMultiplier
	(NC) Specify the multiplier for used for the targetValue.

	maxAllowedTargetValue
	0..1
	Float
	(NC) Maximum allowed target value (RegulatingControl.targetValue).

	minAllowedTargetValue
	0..1
	Float
	(NC) Minimum allowed target value (RegulatingControl.targetValue).

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 23 shows all association ends of RegulatingControlRegularSchedule with other classes.
[bookmark: _Ref163564583][bookmark: _Toc163565174]Table 23 – Association ends of SteadyStateHypothesisScheduleProfile::RegulatingControlRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	RegulatingControl
	0..1
	RegulatingControl
	(NC) Regulating control which has RegulatingControlRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1525][bookmark: _Toc163565051](abstract) RegulatingControl root class
Specifies a set of equipment that works together to control a power system quantity such as voltage or flow.
Remote bus voltage control is possible by specifying the controlled terminal located at some place remote from the controlling equipment.
The specified terminal shall be associated with the connectivity node of the controlled point. The most specific subtype of RegulatingControl shall be used in case such equipment participate in the control, e.g. TapChangerControl for tap changers.
For flow control, load sign convention is used, i.e. positive sign means flow out from a TopologicalNode (bus) into the conducting equipment.
The attribute minAllowedTargetValue and maxAllowedTargetValue are required in the following cases:
- For a power generating module operated in power factor control mode to specify maximum and minimum power factor values;
- Whenever it is necessary to have an off center target voltage for the tap changer regulator. For instance, due to long cables to off shore wind farms and the need to have a simpler setup at the off shore transformer platform, the voltage is controlled from the land at the connection point for the off shore wind farm. Since there usually is a voltage rise along the cable, there is typical and overvoltage of up 3-4 kV compared to the on shore station. Thus in normal operation the tap changer on the on shore station is operated with a target set point, which is in the lower parts of the dead band.
The attributes minAllowedTargetValue and maxAllowedTargetValue are not related to the attribute targetDeadband and thus they are not treated as an alternative of the targetDeadband. They are needed due to limitations in the local substation controller. The attribute targetDeadband is used to prevent the power flow from move the tap position in circles (hunting) that is to be used regardless of the attributes minAllowedTargetValue and maxAllowedTargetValue.
[bookmark: UML4377][bookmark: _Toc163565052](NC) TapChangerControlRegularSchedule
Inheritance path = RegulatingControlRegularSchedule : BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for tap changer control.
Table 24 shows all attributes of TapChangerControlRegularSchedule.
[bookmark: _Ref163564584][bookmark: _Toc163565175]Table 24 – Attributes of SteadyStateHypothesisScheduleProfile::TapChangerControlRegularSchedule
	name
	mult
	type
	description

	targetValue
	1..1
	Float
	(NC) inherited from: RegulatingControlRegularSchedule

	targetValueUnitMultiplier
	1..1
	UnitMultiplier
	(NC) inherited from: RegulatingControlRegularSchedule

	maxAllowedTargetValue
	0..1
	Float
	(NC) inherited from: RegulatingControlRegularSchedule

	minAllowedTargetValue
	0..1
	Float
	(NC) inherited from: RegulatingControlRegularSchedule

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 25 shows all association ends of TapChangerControlRegularSchedule with other classes.
[bookmark: _Ref163564585][bookmark: _Toc163565176]Table 25 – Association ends of SteadyStateHypothesisScheduleProfile::TapChangerControlRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	TapChangerControl
	0..1
	TapChangerControl
	(NC) Tap changer control which has TapChangerControlRegularSchedule.

	0..*
	RegulatingControl
	0..1
	RegulatingControl
	(NC) inherited from: RegulatingControlRegularSchedule

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1526][bookmark: _Toc163565053](abstract) TapChangerControl root class
Describes behaviour specific to tap changers, e.g. how the voltage at the end of a line varies with the load level and compensation of the voltage drop by tap adjustment.
[bookmark: UML4378][bookmark: _Toc163565054](NC) EnergyConnectionRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for energy connection.
Table 26 shows all attributes of EnergyConnectionRegularSchedule.
[bookmark: _Ref163564586][bookmark: _Toc163565177]Table 26 – Attributes of SteadyStateHypothesisScheduleProfile::EnergyConnectionRegularSchedule
	name
	mult
	type
	description

	p
	1..1
	ActivePower
	(NC) Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution.

	q
	1..1
	ReactivePower
	(NC) Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 27 shows all association ends of EnergyConnectionRegularSchedule with other classes.
[bookmark: _Ref163564587][bookmark: _Toc163565178]Table 27 – Association ends of SteadyStateHypothesisScheduleProfile::EnergyConnectionRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	EnergyConnection
	0..1
	EnergyConnection
	(NC) EnergyConnection which has EnergyConnectionSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1527][bookmark: _Toc163565055](abstract) EnergyConnection root class
A connection of energy generation or consumption on the power system model.
[bookmark: UML4379][bookmark: _Toc163565056](NC) TapRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for tap.
Table 28 shows all attributes of TapRegularSchedule.
[bookmark: _Ref163564588][bookmark: _Toc163565179]Table 28 – Attributes of SteadyStateHypothesisScheduleProfile::TapRegularSchedule
	name
	mult
	type
	description

	controlEnabled
	1..1
	Boolean
	(NC) Specifies the regulation status of the equipment. True is regulating, false is not regulating.

	step
	1..1
	Float
	(NC) Tap changer position.
Starting step for a steady state solution. Non integer values are allowed to support continuous tap variables. The reasons for continuous value are to support study cases where no discrete tap changer has yet been designed, a solution where a narrow voltage band forces the tap step to oscillate or to accommodate for a continuous solution as input.
The attribute shall be equal to or greater than lowStep and equal to or less than highStep.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 29 shows all association ends of TapRegularSchedule with other classes.
[bookmark: _Ref163564589][bookmark: _Toc163565180]Table 29 – Association ends of SteadyStateHypothesisScheduleProfile::TapRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	TapChanger
	0..1
	TapChanger
	(NC) Tap changer which has TapRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1528][bookmark: _Toc163565057](abstract) TapChanger root class
Mechanism for changing transformer winding tap positions.
[bookmark: UML4380][bookmark: _Toc163565058](NC) SwitchRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for switch.
Table 30 shows all attributes of SwitchRegularSchedule.
[bookmark: _Ref163564590][bookmark: _Toc163565181]Table 30 – Attributes of SteadyStateHypothesisScheduleProfile::SwitchRegularSchedule
	name
	mult
	type
	description

	open
	1..1
	Boolean
	(NC) The attribute tells if the switch is considered open when used as input to topology processing.

	locked
	1..1
	Boolean
	(NC) If true, the switch is locked. The resulting switch state is a combination of locked and Switch.open attributes as follows:
- locked=true and Switch.open=true. The resulting state is open and locked;
- locked=false and Switch.open=true. The resulting state is open;
- locked=false and Switch.open=false. The resulting state is closed.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 31 shows all association ends of SwitchRegularSchedule with other classes.
[bookmark: _Ref163564591][bookmark: _Toc163565182]Table 31 – Association ends of SteadyStateHypothesisScheduleProfile::SwitchRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	Switch
	0..1
	Switch
	(NC) Switch which has SwitchRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1529][bookmark: _Toc163565059](abstract) Switch root class
A generic device designed to close, or open, or both, one or more electric circuits. All switches are two terminal devices including grounding switches. The ACDCTerminal.connected at the two sides of the switch shall not be considered for assessing switch connectivity, i.e. only Switch.open, .normalOpen and .locked are relevant.
[bookmark: UML4381][bookmark: _Toc163565060](abstract,NC) ACDCConverterRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for ACDC converter.
Table 32 shows all attributes of ACDCConverterRegularSchedule.
[bookmark: _Ref163564592][bookmark: _Toc163565183]Table 32 – Attributes of SteadyStateHypothesisScheduleProfile::ACDCConverterRegularSchedule
	name
	mult
	type
	description

	p
	1..1
	ActivePower
	(NC) Active power at the point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution in the case a simplified power flow model is used.

	q
	1..1
	ReactivePower
	(NC) Reactive power at the point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution in the case a simplified power flow model is used.

	targetPpcc
	0..1
	ActivePower
	(NC) Real power injection target in AC grid, at point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.

	targetUdc
	0..1
	Voltage
	(NC) Target value for DC voltage magnitude. The attribute shall be a positive value.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 33 shows all association ends of ACDCConverterRegularSchedule with other classes.
[bookmark: _Ref163564593][bookmark: _Toc163565184]Table 33 – Association ends of SteadyStateHypothesisScheduleProfile::ACDCConverterRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML4382][bookmark: _Toc163565061](NC) VsConverterRegularSchedule
Inheritance path = ACDCConverterRegularSchedule : BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for VS converter.
Table 34 shows all attributes of VsConverterRegularSchedule.
[bookmark: _Ref163564594][bookmark: _Toc163565185]Table 34 – Attributes of SteadyStateHypothesisScheduleProfile::VsConverterRegularSchedule
	name
	mult
	type
	description

	droop
	0..1
	PU
	Droop constant. The pu value is obtained as D [kV/MW] x Sb / Ubdc. The attribute shall be a positive value.

	droopCompensation
	0..1
	Resistance
	Compensation constant. Used to compensate for voltage drop when controlling voltage at a distant bus. The attribute shall be a positive value.

	pPccControl
	1..1
	VsPpccControlKind
	Kind of control of real power and/or DC voltage.

	qPccControl
	1..1
	VsQpccControlKind
	Kind of reactive power control.

	qShare
	0..1
	PerCent
	Reactive power sharing factor among parallel converters on Uac control. The attribute shall be a positive value or zero.

	targetQpcc
	0..1
	ReactivePower
	Reactive power injection target in AC grid, at point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.

	targetUpcc
	0..1
	Voltage
	Voltage target in AC grid, at point of common coupling. The attribute shall be a positive value.

	targetPowerFactorPcc
	0..1
	Float
	Power factor target at the AC side, at point of common coupling. The attribute shall be a positive value.

	targetPhasePcc
	0..1
	AngleDegrees
	Phase target at AC side, at point of common coupling. The attribute shall be a positive value.

	targetPWMfactor
	0..1
	Float
	Magnitude of pulse-modulation factor. The attribute shall be a positive value.

	p
	1..1
	ActivePower
	(NC) inherited from: ACDCConverterRegularSchedule

	q
	1..1
	ReactivePower
	(NC) inherited from: ACDCConverterRegularSchedule

	targetPpcc
	0..1
	ActivePower
	(NC) inherited from: ACDCConverterRegularSchedule

	targetUdc
	0..1
	Voltage
	(NC) inherited from: ACDCConverterRegularSchedule

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 35 shows all association ends of VsConverterRegularSchedule with other classes.
[bookmark: _Ref163564595][bookmark: _Toc163565186]Table 35 – Association ends of SteadyStateHypothesisScheduleProfile::VsConverterRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	VsConverter
	0..1
	VsConverter
	(NC) VsConverter which has VsConverterRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML4383][bookmark: _Toc163565062](NC) CsConverterRegularSchedule
Inheritance path = ACDCConverterRegularSchedule : BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for CS converter.
Table 36 shows all attributes of CsConverterRegularSchedule.
[bookmark: _Ref163564596][bookmark: _Toc163565187]Table 36 – Attributes of SteadyStateHypothesisScheduleProfile::CsConverterRegularSchedule
	name
	mult
	type
	description

	operatingMode
	1..1
	CsOperatingModeKind
	(NC) Indicates whether the DC pole is operating as an inverter or as a rectifier. It is converter’s control variable used in power flow.

	pPccControl
	1..1
	CsPpccControlKind
	(NC) Kind of active power control.

	targetAlpha
	0..1
	AngleDegrees
	(NC) Target firing angle. It is converter’s control variable used in power flow. It is only applicable for rectifier if continuous tap changer control is used. Allowed values are within the range minAlpha<=targetAlpha<=maxAlpha. The attribute shall be a positive value.

	targetGamma
	0..1
	AngleDegrees
	(NC) Target extinction angle. It is converter’s control variable used in power flow. It is only applicable for inverter if continuous tap changer control is used. Allowed values are within the range minGamma<=targetGamma<=maxGamma. The attribute shall be a positive value.

	targetIdc
	0..1
	CurrentFlow
	(NC) DC current target value. It is converter’s control variable used in power flow. The attribute shall be a positive value.

	p
	1..1
	ActivePower
	(NC) inherited from: ACDCConverterRegularSchedule

	q
	1..1
	ReactivePower
	(NC) inherited from: ACDCConverterRegularSchedule

	targetPpcc
	0..1
	ActivePower
	(NC) inherited from: ACDCConverterRegularSchedule

	targetUdc
	0..1
	Voltage
	(NC) inherited from: ACDCConverterRegularSchedule

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 37 shows all association ends of CsConverterRegularSchedule with other classes.
[bookmark: _Ref163564597][bookmark: _Toc163565188]Table 37 – Association ends of SteadyStateHypothesisScheduleProfile::CsConverterRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	CsConverter
	0..1
	CsConverter
	(NC) CsConverter which has CsConverterRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1530][bookmark: _Toc163565063](abstract) VsConverter root class
DC side of the voltage source converter (VSC).
[bookmark: UML1531][bookmark: _Toc163565064](abstract) CsConverter root class
DC side of the current source converter (CSC).
The firing angle controls the dc voltage at the converter, both for rectifier and inverter. The difference between the dc voltages of the rectifier and inverter determines the dc current. The extinction angle is used to limit the dc voltage at the inverter, if needed, and is not used in active power control. The firing angle, transformer tap position and number of connected filters are the primary means to control a current source dc line. Higher level controls are built on top, e.g. dc voltage, dc current and active power. From a steady state perspective it is sufficient to specify the wanted active power transfer (ACDCConverter.targetPpcc) and the control functions will set the dc voltage, dc current, firing angle, transformer tap position and number of connected filters to meet this. Therefore attributes targetAlpha and targetGamma are not applicable in this case.
The reactive power consumed by the converter is a function of the firing angle, transformer tap position and number of connected filter, which can be approximated with half of the active power. The losses is a function of the dc voltage and dc current.
The attributes minAlpha and maxAlpha define the range of firing angles for rectifier operation between which no discrete tap changer action takes place. The range is typically 10-18 degrees.
The attributes minGamma and maxGamma define the range of extinction angles for inverter operation between which no discrete tap changer action takes place. The range is typically 17-20 degrees.
[bookmark: UML4384][bookmark: _Toc163565065](NC) EquivalentInjectionRegularSchedule
Inheritance path = BaseRegularIntervalSchedule : BaseTimeSeries : IdentifiedObject
Regular schedule for equivalent injection.
Table 38 shows all attributes of EquivalentInjectionRegularSchedule.
[bookmark: _Ref163564598][bookmark: _Toc163565189]Table 38 – Attributes of SteadyStateHypothesisScheduleProfile::EquivalentInjectionRegularSchedule
	name
	mult
	type
	description

	regulationStatus
	0..1
	Boolean
	(NC) Specifies the regulation status of the EquivalentInjection. True is regulating. False is not regulating.

	regulationTarget
	0..1
	Voltage
	(NC) The target voltage for voltage regulation. The attribute shall be a positive value.

	p
	1..1
	ActivePower
	(NC) Equivalent active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

	q
	1..1
	ReactivePower
	(NC) Equivalent reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

	dayOfWeek
	0..1
	DayOfWeekKind
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalStartTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	intervalEndTime
	0..1
	DateTime
	(NC) inherited from: BaseRegularIntervalSchedule

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 39 shows all association ends of EquivalentInjectionRegularSchedule with other classes.
[bookmark: _Ref163564599][bookmark: _Toc163565190]Table 39 – Association ends of SteadyStateHypothesisScheduleProfile::EquivalentInjectionRegularSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	EquivalentInjection
	0..1
	EquivalentInjection
	(NC) EquivalentInjection which has EquivalentInjectionRegularSchedule.

	0..*
	Season
	0..1
	Season
	(NC) inherited from: BaseRegularIntervalSchedule

	0..*
	HourPattern
	0..1
	HourPattern
	(NC) inherited from: BaseRegularIntervalSchedule

[bookmark: UML1532][bookmark: _Toc163565066](abstract) EquivalentInjection root class
This class represents equivalent injections (generation or load). Voltage regulation is allowed only at the point of connection.
[bookmark: UML4386][bookmark: _Toc163565067](NC) EquivalentInjectionSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Regular schedule for equivalent injection.
Table 40 shows all attributes of EquivalentInjectionSchedule.
[bookmark: _Ref163564600][bookmark: _Toc163565191]Table 40 – Attributes of SteadyStateHypothesisScheduleProfile::EquivalentInjectionSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 41 shows all association ends of EquivalentInjectionSchedule with other classes.
[bookmark: _Ref163564601][bookmark: _Toc163565192]Table 41 – Association ends of SteadyStateHypothesisScheduleProfile::EquivalentInjectionSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	EquivalentInjection
	0..1
	EquivalentInjection
	(NC) Equivalent injection which has equivalent injection schedules.

[bookmark: UML1533][bookmark: _Toc163565068](NC) EquivalentInjectionTimePoint root class
Equivalent injection values for a given point in time.
Table 42 shows all attributes of EquivalentInjectionTimePoint.
[bookmark: _Ref163564602][bookmark: _Toc163565193]Table 42 – Attributes of SteadyStateHypothesisScheduleProfile::EquivalentInjectionTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	regulationStatus
	0..1
	Boolean
	(NC) Specifies the regulation status of the EquivalentInjection. True is regulating. False is not regulating.

	regulationTarget
	0..1
	Voltage
	(NC) The target voltage for voltage regulation. The attribute shall be a positive value.

	p
	1..1
	ActivePower
	(NC) Equivalent active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

	q
	1..1
	ReactivePower
	(NC) Equivalent reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

Table 43 shows all association ends of EquivalentInjectionTimePoint with other classes.
[bookmark: _Ref163564603][bookmark: _Toc163565194]Table 43 – Association ends of SteadyStateHypothesisScheduleProfile::EquivalentInjectionTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	EquivalentInjectionSchedule
	1..1
	EquivalentInjectionSchedule
	(NC) The EquivalentInjection schedule that has this time point.

[bookmark: UML4387][bookmark: _Toc163565069](NC) EnergyConnectionSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for energy connection.
Table 44 shows all attributes of EnergyConnectionSchedule.
[bookmark: _Ref163564604][bookmark: _Toc163565195]Table 44 – Attributes of SteadyStateHypothesisScheduleProfile::EnergyConnectionSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 45 shows all association ends of EnergyConnectionSchedule with other classes.
[bookmark: _Ref163564605][bookmark: _Toc163565196]Table 45 – Association ends of SteadyStateHypothesisScheduleProfile::EnergyConnectionSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	EnergyConnection
	0..1
	EnergyConnection
	(NC) Energy connection which has energy connection schedules.

[bookmark: UML1534][bookmark: _Toc163565070](NC) EnergyConnectionTimePoint root class
Energy connection values for a given point in time.
Table 46 shows all attributes of EnergyConnectionTimePoint.
[bookmark: _Ref163564606][bookmark: _Toc163565197]Table 46 – Attributes of SteadyStateHypothesisScheduleProfile::EnergyConnectionTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	p
	1..1
	ActivePower
	(NC) Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution.

	q
	1..1
	ReactivePower
	(NC) Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution.

Table 47 shows all association ends of EnergyConnectionTimePoint with other classes.
[bookmark: _Ref163564607][bookmark: _Toc163565198]Table 47 – Association ends of SteadyStateHypothesisScheduleProfile::EnergyConnectionTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	EnergyConnectionSchedule
	1..1
	EnergyConnectionSchedule
	(NC) The energy connection schedule that has this time point.

[bookmark: UML4388][bookmark: _Toc163565071](NC) TapSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for tap.
Table 48 shows all attributes of TapSchedule.
[bookmark: _Ref163564608][bookmark: _Toc163565199]Table 48 – Attributes of SteadyStateHypothesisScheduleProfile::TapSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 49 shows all association ends of TapSchedule with other classes.
[bookmark: _Ref163564609][bookmark: _Toc163565200]Table 49 – Association ends of SteadyStateHypothesisScheduleProfile::TapSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	TapChanger
	0..1
	TapChanger
	(NC) Tap changer which has tap schedules.

[bookmark: UML1535][bookmark: _Toc163565072](NC) TapScheduleTimePoint root class
Tap schedule values for a given point in time.
Table 50 shows all attributes of TapScheduleTimePoint.
[bookmark: _Ref163564610][bookmark: _Toc163565201]Table 50 – Attributes of SteadyStateHypothesisScheduleProfile::TapScheduleTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	controlEnabled
	1..1
	Boolean
	(NC) Specifies the regulation status of the equipment. True is regulating, false is not regulating.

	step
	1..1
	Float
	(NC) Tap changer position.
Starting step for a steady state solution. Non integer values are allowed to support continuous tap variables. The reasons for continuous value are to support study cases where no discrete tap changer has yet been designed, a solution where a narrow voltage band forces the tap step to oscillate or to accommodate for a continuous solution as input.
The attribute shall be equal to or greater than lowStep and equal to or less than highStep.

Table 51 shows all association ends of TapScheduleTimePoint with other classes.
[bookmark: _Ref163564611][bookmark: _Toc163565202]Table 51 – Association ends of SteadyStateHypothesisScheduleProfile::TapScheduleTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	TapSchedule
	1..1
	TapSchedule
	(NC) The tap schedule that has this time point.

[bookmark: UML4389][bookmark: _Toc163565073](NC) RegulatingControlSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for regulating control.
Table 52 shows all attributes of RegulatingControlSchedule.
[bookmark: _Ref163564612][bookmark: _Toc163565203]Table 52 – Attributes of SteadyStateHypothesisScheduleProfile::RegulatingControlSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 53 shows all association ends of RegulatingControlSchedule with other classes.
[bookmark: _Ref163564613][bookmark: _Toc163565204]Table 53 – Association ends of SteadyStateHypothesisScheduleProfile::RegulatingControlSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	RegulatingControl
	0..1
	RegulatingControl
	(NC) Regulating control which has regulating control schedules.

[bookmark: UML1536][bookmark: _Toc163565074](NC) RegulatingControlTimePoint root class
Regulating control values for a given point in time.
Table 54 shows all attributes of RegulatingControlTimePoint.
[bookmark: _Ref163564614][bookmark: _Toc163565205]Table 54 – Attributes of SteadyStateHypothesisScheduleProfile::RegulatingControlTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	targetValue
	1..1
	Float
	(NC) The target value specified for case input. This value can be used for the target value without the use of schedules. The value has the units appropriate to the mode attribute.

	targetValueUnitMultiplier
	1..1
	UnitMultiplier
	(NC) Specify the multiplier for used for the targetValue.

	maxAllowedTargetValue
	0..1
	Float
	(NC) Maximum allowed target value (RegulatingControl.targetValue).

	minAllowedTargetValue
	0..1
	Float
	(NC) Minimum allowed target value (RegulatingControl.targetValue).

Table 55 shows all association ends of RegulatingControlTimePoint with other classes.
[bookmark: _Ref163564615][bookmark: _Toc163565206]Table 55 – Association ends of SteadyStateHypothesisScheduleProfile::RegulatingControlTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	RegulatingControlSchedule
	1..1
	RegulatingControlSchedule
	(NC) The regulating control schedule that has this time point.

	1..*
	TapChangerControlSchedule
	1..1
	TapChangerControlSchedule
	(NC) The tap changer control schedule that has this time point.

[bookmark: UML4390][bookmark: _Toc163565075](NC) TapChangerControlSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for tap changer control.
Table 56 shows all attributes of TapChangerControlSchedule.
[bookmark: _Ref163564616][bookmark: _Toc163565207]Table 56 – Attributes of SteadyStateHypothesisScheduleProfile::TapChangerControlSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 57 shows all association ends of TapChangerControlSchedule with other classes.
[bookmark: _Ref163564617][bookmark: _Toc163565208]Table 57 – Association ends of SteadyStateHypothesisScheduleProfile::TapChangerControlSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	TapChangerControl
	0..1
	TapChangerControl
	(NC)

[bookmark: UML4391][bookmark: _Toc163565076](NC) VsConverterSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for VS converter.
Table 58 shows all attributes of VsConverterSchedule.
[bookmark: _Ref163564618][bookmark: _Toc163565209]Table 58 – Attributes of SteadyStateHypothesisScheduleProfile::VsConverterSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 59 shows all association ends of VsConverterSchedule with other classes.
[bookmark: _Ref163564619][bookmark: _Toc163565210]Table 59 – Association ends of SteadyStateHypothesisScheduleProfile::VsConverterSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	VsConverter
	0..1
	VsConverter
	(NC) Vs converter which has Vs converter schedules.

[bookmark: UML1537][bookmark: _Toc163565077](abstract,NC) ACDCTimePoint root class
ACDC values for a given point in time.
Table 60 shows all attributes of ACDCTimePoint.
[bookmark: _Ref163564620][bookmark: _Toc163565211]Table 60 – Attributes of SteadyStateHypothesisScheduleProfile::ACDCTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	p
	1..1
	ActivePower
	(NC) Active power at the point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution in the case a simplified power flow model is used.

	q
	1..1
	ReactivePower
	(NC) Reactive power at the point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution in the case a simplified power flow model is used.

	targetPpcc
	0..1
	ActivePower
	(NC) Real power injection target in AC grid, at point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.

	targetUdc
	0..1
	Voltage
	(NC) Target value for DC voltage magnitude. The attribute shall be a positive value.

[bookmark: UML4409][bookmark: _Toc163565078](NC) VsConverterTimePoint
Inheritance path = ACDCTimePoint
VS converter values for a given point in time.
Table 61 shows all attributes of VsConverterTimePoint.
[bookmark: _Ref163564621][bookmark: _Toc163565212]Table 61 – Attributes of SteadyStateHypothesisScheduleProfile::VsConverterTimePoint
	name
	mult
	type
	description

	droop
	0..1
	PU
	(NC) Droop constant. The pu value is obtained as D [kV/MW] x Sb / Ubdc. The attribute shall be a positive value.

	droopCompensation
	0..1
	Resistance
	(NC) Compensation constant. Used to compensate for voltage drop when controlling voltage at a distant bus. The attribute shall be a positive value.

	pPccControl
	1..1
	VsPpccControlKind
	(NC) Kind of control of real power and/or DC voltage.

	qPccControl
	1..1
	VsQpccControlKind
	(NC) Kind of reactive power control.

	qShare
	0..1
	PerCent
	(NC) Reactive power sharing factor among parallel converters on Uac control. The attribute shall be a positive value or zero.

	targetQpcc
	0..1
	ReactivePower
	(NC) Reactive power injection target in AC grid, at point of common coupling. Load sign convention is used, i.e. positive sign means flow out from a node.

	targetUpcc
	0..1
	Voltage
	(NC) Voltage target in AC grid, at point of common coupling. The attribute shall be a positive value.

	targetPowerFactorPcc
	0..1
	Float
	(NC) Power factor target at the AC side, at point of common coupling. The attribute shall be a positive value.

	targetPhasePcc
	0..1
	AngleDegrees
	(NC) Phase target at AC side, at point of common coupling. The attribute shall be a positive value.

	targetPWMfactor
	0..1
	Float
	(NC) Magnitude of pulse-modulation factor. The attribute shall be a positive value.

	atTime
	1..1
	DateTime
	(NC) inherited from: ACDCTimePoint

	p
	1..1
	ActivePower
	(NC) inherited from: ACDCTimePoint

	q
	1..1
	ReactivePower
	(NC) inherited from: ACDCTimePoint

	targetPpcc
	0..1
	ActivePower
	(NC) inherited from: ACDCTimePoint

	targetUdc
	0..1
	Voltage
	(NC) inherited from: ACDCTimePoint

Table 62 shows all association ends of VsConverterTimePoint with other classes.
[bookmark: _Ref163564622][bookmark: _Toc163565213]Table 62 – Association ends of SteadyStateHypothesisScheduleProfile::VsConverterTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	VsConverterSchedule
	1..1
	VsConverterSchedule
	(NC) The VS converter schedule that has this time point.

[bookmark: UML4410][bookmark: _Toc163565079](NC) CsConverterTimePoint
Inheritance path = ACDCTimePoint
CSConverter values for a given point in time.
Table 63 shows all attributes of CsConverterTimePoint.
[bookmark: _Ref163564623][bookmark: _Toc163565214]Table 63 – Attributes of SteadyStateHypothesisScheduleProfile::CsConverterTimePoint
	name
	mult
	type
	description

	operatingMode
	1..1
	CsOperatingModeKind
	(NC) Indicates whether the DC pole is operating as an inverter or as a rectifier. It is converter’s control variable used in power flow.

	pPccControl
	1..1
	CsPpccControlKind
	(NC) Kind of active power control.

	targetAlpha
	0..1
	AngleDegrees
	(NC) Target firing angle. It is converter’s control variable used in power flow. It is only applicable for rectifier if continuous tap changer control is used. Allowed values are within the range minAlpha<=targetAlpha<=maxAlpha. The attribute shall be a positive value.

	targetGamma
	0..1
	AngleDegrees
	(NC) Target extinction angle. It is converter’s control variable used in power flow. It is only applicable for inverter if continuous tap changer control is used. Allowed values are within the range minGamma<=targetGamma<=maxGamma. The attribute shall be a positive value.

	targetIdc
	0..1
	CurrentFlow
	(NC) DC current target value. It is converter’s control variable used in power flow. The attribute shall be a positive value.

	atTime
	1..1
	DateTime
	(NC) inherited from: ACDCTimePoint

	p
	1..1
	ActivePower
	(NC) inherited from: ACDCTimePoint

	q
	1..1
	ReactivePower
	(NC) inherited from: ACDCTimePoint

	targetPpcc
	0..1
	ActivePower
	(NC) inherited from: ACDCTimePoint

	targetUdc
	0..1
	Voltage
	(NC) inherited from: ACDCTimePoint

Table 64 shows all association ends of CsConverterTimePoint with other classes.
[bookmark: _Ref163564624][bookmark: _Toc163565215]Table 64 – Association ends of SteadyStateHypothesisScheduleProfile::CsConverterTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	CsConverterSchedule
	1..1
	CsConverterSchedule
	(NC) The CS converter schedule that has this time point.

[bookmark: UML4392][bookmark: _Toc163565080](NC) CsConverterSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for CS converter.
Table 65 shows all attributes of CsConverterSchedule.
[bookmark: _Ref163564625][bookmark: _Toc163565216]Table 65 – Attributes of SteadyStateHypothesisScheduleProfile::CsConverterSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 66 shows all association ends of CsConverterSchedule with other classes.
[bookmark: _Ref163564626][bookmark: _Toc163565217]Table 66 – Association ends of SteadyStateHypothesisScheduleProfile::CsConverterSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	CsConverter
	0..1
	CsConverter
	(NC) Cs converter which has Cs converter schedules.

[bookmark: UML4393][bookmark: _Toc163565081](NC) SwitchSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for switch.
Table 67 shows all attributes of SwitchSchedule.
[bookmark: _Ref163564627][bookmark: _Toc163565218]Table 67 – Attributes of SteadyStateHypothesisScheduleProfile::SwitchSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 68 shows all association ends of SwitchSchedule with other classes.
[bookmark: _Ref163564628][bookmark: _Toc163565219]Table 68 – Association ends of SteadyStateHypothesisScheduleProfile::SwitchSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	Switch
	0..1
	Switch
	(NC) Switch which has switch schedules.

[bookmark: UML1538][bookmark: _Toc163565082](NC) SwitchTimePoint root class
Switch values for a given point in time.
Table 69 shows all attributes of SwitchTimePoint.
[bookmark: _Ref163564629][bookmark: _Toc163565220]Table 69 – Attributes of SteadyStateHypothesisScheduleProfile::SwitchTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	open
	1..1
	Boolean
	(NC) The attribute tells if the switch is considered open when used as input to topology processing.

	locked
	1..1
	Boolean
	(NC) If true, the switch is locked. The resulting switch state is a combination of locked and Switch.open attributes as follows:
- locked=true and Switch.open=true. The resulting state is open and locked;
- locked=false and Switch.open=true. The resulting state is open;
- locked=false and Switch.open=false. The resulting state is closed.

Table 70 shows all association ends of SwitchTimePoint with other classes.
[bookmark: _Ref163564630][bookmark: _Toc163565221]Table 70 – Association ends of SteadyStateHypothesisScheduleProfile::SwitchTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	SwitchSchedule
	1..1
	SwitchSchedule
	The switch schedule that has this time point.

[bookmark: UML4394][bookmark: _Toc163565083](NC) InServiceSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for elements having in service.
Table 71 shows all attributes of InServiceSchedule.
[bookmark: _Ref163564631][bookmark: _Toc163565222]Table 71 – Attributes of SteadyStateHypothesisScheduleProfile::InServiceSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 72 shows all association ends of InServiceSchedule with other classes.
[bookmark: _Ref163564632][bookmark: _Toc163565223]Table 72 – Association ends of SteadyStateHypothesisScheduleProfile::InServiceSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	Equipment
	0..1
	Equipment
	(NC) Equipment which has equipment schedules.

[bookmark: UML1539][bookmark: _Toc163565084](NC) InServiceTimePoint root class
In service values for a given point in time.
Table 73 shows all attributes of InServiceTimePoint.
[bookmark: _Ref163564633][bookmark: _Toc163565224]Table 73 – Attributes of SteadyStateHypothesisScheduleProfile::InServiceTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	inService
	1..1
	Boolean
	(NC) Specifies the availability of the equipment. True means the equipment is available for topology processing, which determines if the equipment is energized or not. False means that the equipment is treated by network applications as if it is not in the model.

Table 74 shows all association ends of InServiceTimePoint with other classes.
[bookmark: _Ref163564634][bookmark: _Toc163565225]Table 74 – Association ends of SteadyStateHypothesisScheduleProfile::InServiceTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	InServiceSchedule
	1..1
	InServiceSchedule
	(NC) The in service schedule that has this time point.

[bookmark: UML4395][bookmark: _Toc163565085](NC) ControlAreaSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for control area.
Table 75 shows all attributes of ControlAreaSchedule.
[bookmark: _Ref163564635][bookmark: _Toc163565226]Table 75 – Attributes of SteadyStateHypothesisScheduleProfile::ControlAreaSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 76 shows all association ends of ControlAreaSchedule with other classes.
[bookmark: _Ref163564636][bookmark: _Toc163565227]Table 76 – Association ends of SteadyStateHypothesisScheduleProfile::ControlAreaSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	ControlArea
	0..1
	ControlArea
	(NC) Control area which has control area schedules.

[bookmark: UML1540][bookmark: _Toc163565086](NC) ControlAreaTimePoint root class
Participation factor for a given point in time.
Table 77 shows all attributes of ControlAreaTimePoint.
[bookmark: _Ref163564637][bookmark: _Toc163565228]Table 77 – Attributes of SteadyStateHypothesisScheduleProfile::ControlAreaTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	netInterchange
	1..1
	ActivePower
	(NC) The specified positive net interchange into the control area, i.e. positive sign means flow into the area.

	pTolerance
	0..1
	ActivePower
	(NC) Active power net interchange tolerance. The attribute shall be a positive value or zero.

Table 78 shows all association ends of ControlAreaTimePoint with other classes.
[bookmark: _Ref163564638][bookmark: _Toc163565229]Table 78 – Association ends of SteadyStateHypothesisScheduleProfile::ControlAreaTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	ControlAreaSchedule
	1..1
	ControlAreaSchedule
	(NC) The control area schedule that has this time point.

[bookmark: UML4396][bookmark: _Toc163565087](NC) SynchronousMachineSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for synchronous machine.
Table 79 shows all attributes of SynchronousMachineSchedule.
[bookmark: _Ref163564639][bookmark: _Toc163565230]Table 79 – Attributes of SteadyStateHypothesisScheduleProfile::SynchronousMachineSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 80 shows all association ends of SynchronousMachineSchedule with other classes.
[bookmark: _Ref163564640][bookmark: _Toc163565231]Table 80 – Association ends of SteadyStateHypothesisScheduleProfile::SynchronousMachineSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	SynchronousMachine
	0..1
	SynchronousMachine
	(NC) Synchronous machine which has synchronous machine schedules.

[bookmark: UML1541][bookmark: _Toc163565088](NC) SynchronousMachineTimePoint root class
Synchronous machine values for a given point in time.
Table 81 shows all attributes of SynchronousMachineTimePoint.
[bookmark: _Ref163564641][bookmark: _Toc163565232]Table 81 – Attributes of SteadyStateHypothesisScheduleProfile::SynchronousMachineTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	operatingMode
	1..1
	SynchronousMachineOperatingMode
	(NC) Current mode of operation.

	referencePriority
	1..1
	Integer
	(NC) Priority of unit for use as powerflow voltage phase angle reference bus selection. 0 = don t care (default) 1 = highest priority. 2 is less than 1 and so on.

Table 82 shows all association ends of SynchronousMachineTimePoint with other classes.
[bookmark: _Ref163564642][bookmark: _Toc163565233]Table 82 – Association ends of SteadyStateHypothesisScheduleProfile::SynchronousMachineTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	SynchronousMachineSchedule
	1..1
	SynchronousMachineSchedule
	(NC) The synchronous machine schedule that has this time point.

[bookmark: UML4397][bookmark: _Toc163565089](NC) AsynchronousMachineSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for asynchronous machine.
Table 83 shows all attributes of AsynchronousMachineSchedule.
[bookmark: _Ref163564643][bookmark: _Toc163565234]Table 83 – Attributes of SteadyStateHypothesisScheduleProfile::AsynchronousMachineSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 84 shows all association ends of AsynchronousMachineSchedule with other classes.
[bookmark: _Ref163564644][bookmark: _Toc163565235]Table 84 – Association ends of SteadyStateHypothesisScheduleProfile::AsynchronousMachineSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	AsynchronousMachine
	0..1
	AsynchronousMachine
	(NC) Asynchronous machine which has asynchronous machine schedules.

[bookmark: UML1542][bookmark: _Toc163565090](NC) AsynchronousMachineTimePoint root class
Asynchronous machine values for a given point in time.
Table 85 shows all attributes of AsynchronousMachineTimePoint.
[bookmark: _Ref163564645][bookmark: _Toc163565236]Table 85 – Attributes of SteadyStateHypothesisScheduleProfile::AsynchronousMachineTimePoint
	name
	mult
	type
	description

	asynchronousMachineType
	1..1
	AsynchronousMachineKind
	(NC) Indicates the type of Asynchronous Machine (motor or generator).

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

Table 86 shows all association ends of AsynchronousMachineTimePoint with other classes.
[bookmark: _Ref163564646][bookmark: _Toc163565237]Table 86 – Association ends of SteadyStateHypothesisScheduleProfile::AsynchronousMachineTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	AsynchronousMachineSchedule
	1..1
	AsynchronousMachineSchedule
	(NC) The asynchronous machine schedule that has this time point.

[bookmark: UML4398][bookmark: _Toc163565091](NC) ExternalNetworkInjectionSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for external network injection.
Table 87 shows all attributes of ExternalNetworkInjectionSchedule.
[bookmark: _Ref163564647][bookmark: _Toc163565238]Table 87 – Attributes of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 88 shows all association ends of ExternalNetworkInjectionSchedule with other classes.
[bookmark: _Ref163564648][bookmark: _Toc163565239]Table 88 – Association ends of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	ExternalNetworkInjection
	0..1
	ExternalNetworkInjection
	(NC) External Network Injection which has External Network Injection schedules.

[bookmark: UML1543][bookmark: _Toc163565092](NC) ExternalNetworkInjectionTimePoint root class
External network injection values for a given point in time.
Table 89 shows all attributes of ExternalNetworkInjectionTimePoint.
[bookmark: _Ref163564649][bookmark: _Toc163565240]Table 89 – Attributes of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	referencePriority
	1..1
	Integer
	(NC) Priority of unit for use as powerflow voltage phase angle reference bus selection. 0 = don t care (default) 1 = highest priority. 2 is less than 1 and so on.

	p
	1..1
	ActivePower
	(NC) Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

	q
	1..1
	ReactivePower
	(NC) Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for steady state solutions.

Table 90 shows all association ends of ExternalNetworkInjectionTimePoint with other classes.
[bookmark: _Ref163564650][bookmark: _Toc163565241]Table 90 – Association ends of SteadyStateHypothesisScheduleProfile::ExternalNetworkInjectionTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	ExternalNetworkInjectionSchedule
	1..1
	ExternalNetworkInjectionSchedule
	(NC) The external network injection schedule that has this time point.

[bookmark: UML4399][bookmark: _Toc163565093](NC) BatteryUnitSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for battery unit.
Table 91 shows all attributes of BatteryUnitSchedule.
[bookmark: _Ref163564651][bookmark: _Toc163565242]Table 91 – Attributes of SteadyStateHypothesisScheduleProfile::BatteryUnitSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 92 shows all association ends of BatteryUnitSchedule with other classes.
[bookmark: _Ref163564652][bookmark: _Toc163565243]Table 92 – Association ends of SteadyStateHypothesisScheduleProfile::BatteryUnitSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	BatteryUnit
	0..1
	BatteryUnit
	(NC) Battery unit which has battery unit schedules.

[bookmark: UML1544][bookmark: _Toc163565094](NC) BatteryUnitTimePoint root class
Battery unit values for a given point in time.
Table 93 shows all attributes of BatteryUnitTimePoint.
[bookmark: _Ref163564653][bookmark: _Toc163565244]Table 93 – Attributes of SteadyStateHypothesisScheduleProfile::BatteryUnitTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	batteryState
	1..1
	BatteryStateKind
	(NC) The current state of the battery (charging, full, etc.).

	storedE
	1..1
	RealEnergy
	(NC) Amount of energy currently stored. The attribute shall be a positive value or zero and lower than BatteryUnit.ratedE.

Table 94 shows all association ends of BatteryUnitTimePoint with other classes.
[bookmark: _Ref163564654][bookmark: _Toc163565245]Table 94 – Association ends of SteadyStateHypothesisScheduleProfile::BatteryUnitTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	BatteryUnitSchedule
	1..1
	BatteryUnitSchedule
	(NC) The battery unit schedule that has this time point.

[bookmark: UML1545][bookmark: _Toc163565095](abstract) BatteryUnit root class
An electrochemical energy storage device.
[bookmark: UML4400][bookmark: _Toc163565096](NC) VoltageLimitSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for voltage limit.
Table 95 shows all attributes of VoltageLimitSchedule.
[bookmark: _Ref163564655][bookmark: _Toc163565246]Table 95 – Attributes of SteadyStateHypothesisScheduleProfile::VoltageLimitSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 96 shows all association ends of VoltageLimitSchedule with other classes.
[bookmark: _Ref163564656][bookmark: _Toc163565247]Table 96 – Association ends of SteadyStateHypothesisScheduleProfile::VoltageLimitSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	VoltageLimit
	0..1
	VoltageLimit
	(NC) Voltage limit which has voltage limit schedules.

[bookmark: UML1546][bookmark: _Toc163565097](abstract) VoltageLimit root class
Operational limit applied to voltage.
The use of operational VoltageLimit is preferred instead of limits defined at VoltageLevel. The operational VoltageLimits are used, if present.
[bookmark: UML1547][bookmark: _Toc163565098](NC) VoltageLimitTimePoint root class
Voltage limit values for a given point in time.
Table 97 shows all attributes of VoltageLimitTimePoint.
[bookmark: _Ref163564657][bookmark: _Toc163565248]Table 97 – Attributes of SteadyStateHypothesisScheduleProfile::VoltageLimitTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	value
	1..1
	Voltage
	(NC) Limit on voltage. High or low limit nature of the limit depends upon the properties of the operational limit type. The attribute shall be a positive value or zero.

Table 98 shows all association ends of VoltageLimitTimePoint with other classes.
[bookmark: _Ref163564658][bookmark: _Toc163565249]Table 98 – Association ends of SteadyStateHypothesisScheduleProfile::VoltageLimitTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	VoltageLimitSchedule
	1..1
	VoltageLimitSchedule
	(NC) The voltage limit schedule that has this time point.

[bookmark: UML4401][bookmark: _Toc163565099](NC) ActivePowerLimitSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for active power limit.
Table 99 shows all attributes of ActivePowerLimitSchedule.
[bookmark: _Ref163564659][bookmark: _Toc163565250]Table 99 – Attributes of SteadyStateHypothesisScheduleProfile::ActivePowerLimitSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 100 shows all association ends of ActivePowerLimitSchedule with other classes.
[bookmark: _Ref163564660][bookmark: _Toc163565251]Table 100 – Association ends of SteadyStateHypothesisScheduleProfile::ActivePowerLimitSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	ActivePowerLimit
	0..1
	ActivePowerLimit
	(NC) Active power limit which has active power limit schedules.

[bookmark: UML1548][bookmark: _Toc163565100](abstract) ActivePowerLimit root class
Limit on active power flow.
[bookmark: UML1549][bookmark: _Toc163565101](NC) ActivePowerLimitTimePoint root class
Active power limit for a given point in time.
Table 101 shows all attributes of ActivePowerLimitTimePoint.
[bookmark: _Ref163564661][bookmark: _Toc163565252]Table 101 – Attributes of SteadyStateHypothesisScheduleProfile::ActivePowerLimitTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	value
	1..1
	ActivePower
	(NC) Value of active power limit. The attribute shall be a positive value or zero.

Table 102 shows all association ends of ActivePowerLimitTimePoint with other classes.
[bookmark: _Ref163564662][bookmark: _Toc163565253]Table 102 – Association ends of SteadyStateHypothesisScheduleProfile::ActivePowerLimitTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	ActivePowerLimitSchedule
	1..1
	ActivePowerLimitSchedule
	(NC) The active power limit schedule that has this time point.

[bookmark: UML4402][bookmark: _Toc163565102](NC) ApparentPowerLimitSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for apparent power limit.
Table 103 shows all attributes of ApparentPowerLimitSchedule.
[bookmark: _Ref163564663][bookmark: _Toc163565254]Table 103 – Attributes of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 104 shows all association ends of ApparentPowerLimitSchedule with other classes.
[bookmark: _Ref163564664][bookmark: _Toc163565255]Table 104 – Association ends of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	ApparentPowerLimit
	0..1
	ApparentPowerLimit
	(NC) Apparent power limit which has apparent power limit schedules.

[bookmark: UML1550][bookmark: _Toc163565103](abstract) ApparentPowerLimit root class
Apparent power limit.
[bookmark: UML1551][bookmark: _Toc163565104](NC) ApparentPowerLimitTimePoint root class
Apparent power limit for a given point in time.
Table 105 shows all attributes of ApparentPowerLimitTimePoint.
[bookmark: _Ref163564665][bookmark: _Toc163565256]Table 105 – Attributes of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	value
	1..1
	ApparentPower
	(NC) The apparent power limit. The attribute shall be a positive value or zero.

Table 106 shows all association ends of ApparentPowerLimitTimePoint with other classes.
[bookmark: _Ref163564666][bookmark: _Toc163565257]Table 106 – Association ends of SteadyStateHypothesisScheduleProfile::ApparentPowerLimitTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	ApparentPowerLimitSchedule
	1..1
	ApparentPowerLimitSchedule
	(NC) The apparent power limit schedule that has this time point.

[bookmark: UML4403][bookmark: _Toc163565105](NC) CurrentLimitSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for current limit.
Table 107 shows all attributes of CurrentLimitSchedule.
[bookmark: _Ref163564667][bookmark: _Toc163565258]Table 107 – Attributes of SteadyStateHypothesisScheduleProfile::CurrentLimitSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 108 shows all association ends of CurrentLimitSchedule with other classes.
[bookmark: _Ref163564668][bookmark: _Toc163565259]Table 108 – Association ends of SteadyStateHypothesisScheduleProfile::CurrentLimitSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	CurrentLimit
	0..1
	CurrentLimit
	(NC) Current limit which has current limit schedules.

[bookmark: UML1552][bookmark: _Toc163565106](abstract) CurrentLimit root class
Operational limit on current.
[bookmark: UML1553][bookmark: _Toc163565107](NC) CurrentLimitTimePoint root class
Current limit values for a given point in time.
Table 109 shows all attributes of CurrentLimitTimePoint.
[bookmark: _Ref163564669][bookmark: _Toc163565260]Table 109 – Attributes of SteadyStateHypothesisScheduleProfile::CurrentLimitTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	value
	1..1
	CurrentFlow
	(NC) Limit on current flow. The attribute shall be a positive value or zero.

Table 110 shows all association ends of CurrentLimitTimePoint with other classes.
[bookmark: _Ref163564670][bookmark: _Toc163565261]Table 110 – Association ends of SteadyStateHypothesisScheduleProfile::CurrentLimitTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	CurrentLimitSchedule
	1..1
	CurrentLimitSchedule
	(NC) The current limit schedule that has this time point.

[bookmark: UML4404][bookmark: _Toc163565108](NC) ShuntCompensatorSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for shunt compensator.
Table 111 shows all attributes of ShuntCompensatorSchedule.
[bookmark: _Ref163564671][bookmark: _Toc163565262]Table 111 – Attributes of SteadyStateHypothesisScheduleProfile::ShuntCompensatorSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 112 shows all association ends of ShuntCompensatorSchedule with other classes.
[bookmark: _Ref163564672][bookmark: _Toc163565263]Table 112 – Association ends of SteadyStateHypothesisScheduleProfile::ShuntCompensatorSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	ShuntCompensator
	0..1
	ShuntCompensator
	(NC) Shunt compensator which has shunt compensator schedules.

[bookmark: UML1554][bookmark: _Toc163565109](NC) ShuntCompensatorTimePoint root class
Shunt compensator values for a given point in time.
Table 113 shows all attributes of ShuntCompensatorTimePoint.
[bookmark: _Ref163564673][bookmark: _Toc163565264]Table 113 – Attributes of SteadyStateHypothesisScheduleProfile::ShuntCompensatorTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	sections
	1..1
	Float
	(NC) Shunt compensator sections in use. Starting value for steady state solution. The attribute shall be a positive value or zero. Non integer values are allowed to support continuous variables. The reasons for continuous value are to support study cases where no discrete shunt compensators has yet been designed, a solutions where a narrow voltage band force the sections to oscillate or accommodate for a continuous solution as input.
For LinearShuntConpensator the value shall be between zero and ShuntCompensator.maximumSections. At value zero the shunt compensator conductance and admittance is zero. Linear interpolation of conductance and admittance between the previous and next integer section is applied in case of non-integer values.
For NonlinearShuntCompensator-s shall only be set to one of the NonlinearShuntCompenstorPoint.sectionNumber. There is no interpolation between NonlinearShuntCompenstorPoint-s.

Table 114 shows all association ends of ShuntCompensatorTimePoint with other classes.
[bookmark: _Ref163564674][bookmark: _Toc163565265]Table 114 – Association ends of SteadyStateHypothesisScheduleProfile::ShuntCompensatorTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	ShuntCompensatorSchedule
	1..1
	ShuntCompensatorSchedule
	(NC) The shunt compensator schedule that has this time point.

[bookmark: UML1555][bookmark: _Toc163565110](abstract) ShuntCompensator root class
A shunt capacitor or reactor or switchable bank of shunt capacitors or reactors. A section of a shunt compensator is an individual capacitor or reactor. A negative value for bPerSection indicates that the compensator is a reactor. ShuntCompensator is a single terminal device. Ground is implied.
[bookmark: UML4405][bookmark: _Toc163565111](NC) StaticVarCompensatorSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for static var compensator.
Table 115 shows all attributes of StaticVarCompensatorSchedule.
[bookmark: _Ref163564675][bookmark: _Toc163565266]Table 115 – Attributes of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 116 shows all association ends of StaticVarCompensatorSchedule with other classes.
[bookmark: _Ref163564676][bookmark: _Toc163565267]Table 116 – Association ends of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	StaticVarCompensator
	0..1
	StaticVarCompensator
	(NC) Static var compensator which has static var compensator schedules.

[bookmark: UML1556][bookmark: _Toc163565112](NC) StaticVarCompensatorTimePoint root class
Static var compensator values for a given point in time.
Table 117 shows all attributes of StaticVarCompensatorTimePoint.
[bookmark: _Ref163564677][bookmark: _Toc163565268]Table 117 – Attributes of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorTimePoint
	name
	mult
	type
	description

	atTime
	0..1
	DateTime
	(NC) The time the data is valid for.

	q
	1..1
	ReactivePower
	(NC) Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
Starting value for a steady state solution.

Table 118 shows all association ends of StaticVarCompensatorTimePoint with other classes.
[bookmark: _Ref163564678][bookmark: _Toc163565269]Table 118 – Association ends of SteadyStateHypothesisScheduleProfile::StaticVarCompensatorTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	StaticVarCompensatorSchedule
	1..1
	StaticVarCompensatorSchedule
	(NC) The StaticVarCompensator schedule that has this time point.

[bookmark: UML1557][bookmark: _Toc163565113](abstract) StaticVarCompensator root class
A facility for providing variable and controllable shunt reactive power. The SVC typically consists of a stepdown transformer, filter, thyristor-controlled reactor, and thyristor-switched capacitor arms.
The SVC may operate in fixed MVar output mode or in voltage control mode. When in voltage control mode, the output of the SVC will be proportional to the deviation of voltage at the controlled bus from the voltage setpoint. The SVC characteristic slope defines the proportion. If the voltage at the controlled bus is equal to the voltage setpoint, the SVC MVar output is zero.
[bookmark: UML4406][bookmark: _Toc163565114](NC) GeneratingUnitSchedule
Inheritance path = BaseIrregularTimeSeries : BaseTimeSeries : IdentifiedObject
Schedule for generating unit.
Table 119 shows all attributes of GeneratingUnitSchedule.
[bookmark: _Ref163564679][bookmark: _Toc163565270]Table 119 – Attributes of SteadyStateHypothesisScheduleProfile::GeneratingUnitSchedule
	name
	mult
	type
	description

	interpolationKind
	1..1
	TimeSeriesInterpolationKind
	(NC) inherited from: BaseTimeSeries

	timeSeriesKind
	0..1
	BaseTimeSeriesKind
	(NC) inherited from: BaseTimeSeries

	generatedAtTime
	0..1
	DateTime
	(NC) inherited from: BaseTimeSeries

	percentile
	0..1
	Integer
	(NC) inherited from: BaseTimeSeries

	description
	0..1
	String
	inherited from: IdentifiedObject

	mRID
	1..1
	String
	inherited from: IdentifiedObject

	name
	1..1
	String
	inherited from: IdentifiedObject

Table 120 shows all association ends of GeneratingUnitSchedule with other classes.
[bookmark: _Ref163564680][bookmark: _Toc163565271]Table 120 – Association ends of SteadyStateHypothesisScheduleProfile::GeneratingUnitSchedule with other classes
	mult from
	name
	mult to
	type
	description

	0..*
	GeneratingUnit
	0..1
	GeneratingUnit
	(NC) Generating unit which has generating unit schedules.

[bookmark: UML1558][bookmark: _Toc163565115](NC) GeneratingUnitTimePoint root class
Generating unit values for a given point in time.
Table 121 shows all attributes of GeneratingUnitTimePoint.
[bookmark: _Ref163564681][bookmark: _Toc163565272]Table 121 – Attributes of SteadyStateHypothesisScheduleProfile::GeneratingUnitTimePoint
	name
	mult
	type
	description

	atTime
	1..1
	DateTime
	(NC) The time the data is valid for.

	normalPF
	1..1
	Float
	(NC) Generating unit economic participation factor. The sum of the participation factors across generating units does not have to sum to one. It is used for representing distributed slack participation factor. The attribute shall be a positive value or zero.

Table 122 shows all association ends of GeneratingUnitTimePoint with other classes.
[bookmark: _Ref163564682][bookmark: _Toc163565273]Table 122 – Association ends of SteadyStateHypothesisScheduleProfile::GeneratingUnitTimePoint with other classes
	mult from
	name
	mult to
	type
	description

	1..*
	GeneratingUnitSchedule
	1..1
	GeneratingUnitSchedule
	The generating unit schedule that has this time point.

[bookmark: UML1559][bookmark: _Toc163565116](abstract) GeneratingUnit root class
A single or set of synchronous machines for converting mechanical power into alternating-current power. For example, individual machines within a set may be defined for scheduling purposes while a single control signal is derived for the set. In this case there would be a GeneratingUnit for each member of the set and an additional GeneratingUnit corresponding to the set.
[bookmark: UML1560][bookmark: _Toc163565117]MonthDay primitive
MonthDay format as "--mm-dd", which conforms with XSD data type gMonthDay.
[bookmark: UML1561][bookmark: _Toc163565118]ActivePower datatype
Product of RMS value of the voltage and the RMS value of the in-phase component of the current.
Table 123 shows all attributes of ActivePower.
[bookmark: _Ref163564683][bookmark: _Toc163565274]Table 123 – Attributes of SteadyStateHypothesisScheduleProfile::ActivePower
	name
	mult
	type
	description

	value
	0..1
	Float
	

	multiplier
	0..1
	UnitMultiplier
	(const=M)

	unit
	0..1
	UnitSymbol
	(const=W)

[bookmark: UML1562][bookmark: _Toc163565119]Float primitive
A floating point number. The range is unspecified and not limited.
[bookmark: UML1563][bookmark: _Toc163565120]UnitMultiplier enumeration
The unit multipliers defined for the CIM. When applied to unit symbols, the unit symbol is treated as a derived unit. Regardless of the contents of the unit symbol text, the unit symbol shall be treated as if it were a single-character unit symbol. Unit symbols should not contain multipliers, and it should be left to the multiplier to define the multiple for an entire data type.
For example, if a unit symbol is "m2Pers" and the multiplier is "k", then the value is k(m**2/s), and the multiplier applies to the entire final value, not to any individual part of the value. This can be conceptualized by substituting a derived unit symbol for the unit type. If one imagines that the symbol "Þ" represents the derived unit "m2Pers", then applying the multiplier "k" can be conceptualized simply as "kÞ".
For example, the SI unit for mass is "kg" and not "g". If the unit symbol is defined as "kg", then the multiplier is applied to "kg" as a whole and does not replace the "k" in front of the "g". In this case, the multiplier of "m" would be used with the unit symbol of "kg" to represent one gram. As a text string, this violates the instructions in IEC 80000-1. However, because the unit symbol in CIM is treated as a derived unit instead of as an SI unit, it makes more sense to conceptualize the "kg" as if it were replaced by one of the proposed replacements for the SI mass symbol. If one imagines that the "kg" were replaced by a symbol "Þ", then it is easier to conceptualize the multiplier "m" as creating the proper unit "mÞ", and not the forbidden unit "mkg".
Table 124 shows all literals of UnitMultiplier.
[bookmark: _Ref163564684][bookmark: _Toc163565275]Table 124 – Literals of SteadyStateHypothesisScheduleProfile::UnitMultiplier
	literal
	value
	description

	[bookmark: UML10367]none
	0
	No multiplier or equivalently multiply by 1.

	[bookmark: UML10368]k
	3
	Kilo 10**3.

	[bookmark: UML10369]M
	6
	Mega 10**6.

[bookmark: UML1564][bookmark: _Toc163565121]UnitSymbol enumeration
The derived units defined for usage in the CIM. In some cases, the derived unit is equal to an SI unit. Whenever possible, the standard derived symbol is used instead of the formula for the derived unit. For example, the unit symbol Farad is defined as "F" instead of "CPerV". In cases where a standard symbol does not exist for a derived unit, the formula for the unit is used as the unit symbol. For example, density does not have a standard symbol and so it is represented as "kgPerm3". With the exception of the "kg", which is an SI unit, the unit symbols do not contain multipliers and therefore represent the base derived unit to which a multiplier can be applied as a whole.
Every unit symbol is treated as an unparseable text as if it were a single-letter symbol. The meaning of each unit symbol is defined by the accompanying descriptive text and not by the text contents of the unit symbol.
To allow the widest possible range of serializations without requiring special character handling, several substitutions are made which deviate from the format described in IEC 80000-1. The division symbol "/" is replaced by the letters "Per". Exponents are written in plain text after the unit as "m3" instead of being formatted as "m" with a superscript of 3 or introducing a symbol as in "m^3". The degree symbol "°" is replaced with the letters "deg". Any clarification of the meaning for a substitution is included in the description for the unit symbol.
Non-SI units are included in list of unit symbols to allow sources of data to be correctly labelled with their non-SI units (for example, a GPS sensor that is reporting numbers that represent feet instead of meters). This allows software to use the unit symbol information correctly convert and scale the raw data of those sources into SI-based units.
The integer values are used for harmonization with IEC 61850.
Table 125 shows all literals of UnitSymbol.
[bookmark: _Ref163564685][bookmark: _Toc163565276]Table 125 – Literals of SteadyStateHypothesisScheduleProfile::UnitSymbol
	literal
	value
	description

	[bookmark: UML10370]none
	0
	Dimension less quantity, e.g. count, per unit, etc.

	[bookmark: UML10371]A
	5
	Current in amperes.

	[bookmark: UML10372]deg
	9
	Plane angle in degrees.

	[bookmark: UML10373]V
	29
	Electric potential in volts (W/A).

	[bookmark: UML10374]ohm
	30
	Electric resistance in ohms (V/A).

	[bookmark: UML10375]W
	38
	Real power in watts (J/s). Electrical power may have real and reactive components. The real portion of electrical power (I²R or VIcos(phi)), is expressed in Watts. See also apparent power and reactive power.

	[bookmark: UML10376]VA
	61
	Apparent power in volt amperes. See also real power and reactive power.

	[bookmark: UML10377]VAr
	63
	Reactive power in volt amperes reactive. The “reactive” or “imaginary” component of electrical power (VIsin(phi)). (See also real power and apparent power).
Note: Different meter designs use different methods to arrive at their results. Some meters may compute reactive power as an arithmetic value, while others compute the value vectorially. The data consumer should determine the method in use and the suitability of the measurement for the intended purpose.

	[bookmark: UML10378]Wh
	72
	Real energy in watt hours.

[bookmark: UML1565][bookmark: _Toc163565122]ReactivePower datatype
Product of RMS value of the voltage and the RMS value of the quadrature component of the current.
Table 126 shows all attributes of ReactivePower.
[bookmark: _Ref163564686][bookmark: _Toc163565277]Table 126 – Attributes of SteadyStateHypothesisScheduleProfile::ReactivePower
	name
	mult
	type
	description

	value
	0..1
	Float
	

	unit
	0..1
	UnitSymbol
	(const=VAr)

	multiplier
	0..1
	UnitMultiplier
	(const=M)

[bookmark: UML1566][bookmark: _Toc163565123]Voltage datatype
Electrical voltage, can be both AC and DC.
Table 127 shows all attributes of Voltage.
[bookmark: _Ref163564687][bookmark: _Toc163565278]Table 127 – Attributes of SteadyStateHypothesisScheduleProfile::Voltage
	name
	mult
	type
	description

	value
	0..1
	Float
	

	multiplier
	0..1
	UnitMultiplier
	(const=k)

	unit
	0..1
	UnitSymbol
	(const=V)

[bookmark: UML1567][bookmark: _Toc163565124]DateTime primitive
Date and time as "yyyy-mm-ddThh:mm:ss.sss", which conforms with ISO 8601. UTC time zone is specified as "yyyy-mm-ddThh:mm:ss.sssZ". A local timezone relative UTC is specified as "yyyy-mm-ddThh:mm:ss.sss-hh:mm". The second component (shown here as "ss.sss") could have any number of digits in its fractional part to allow any kind of precision beyond seconds.
[bookmark: UML1568][bookmark: _Toc163565125]ApparentPower datatype
Product of the RMS value of the voltage and the RMS value of the current.
Table 128 shows all attributes of ApparentPower.
[bookmark: _Ref163564688][bookmark: _Toc163565279]Table 128 – Attributes of SteadyStateHypothesisScheduleProfile::ApparentPower
	name
	mult
	type
	description

	value
	0..1
	Float
	

	multiplier
	0..1
	UnitMultiplier
	(const=M)

	unit
	0..1
	UnitSymbol
	(const=VA)

[bookmark: UML1569][bookmark: _Toc163565126]AsynchronousMachineKind enumeration
Kind of Asynchronous Machine.
Table 129 shows all literals of AsynchronousMachineKind.
[bookmark: _Ref163564689][bookmark: _Toc163565280]Table 129 – Literals of SteadyStateHypothesisScheduleProfile::AsynchronousMachineKind
	literal
	value
	description

	[bookmark: UML10379]generator
	
	The Asynchronous Machine is a generator.

	[bookmark: UML10380]motor
	
	The Asynchronous Machine is a motor.

[bookmark: UML1570][bookmark: _Toc163565127](NC) DayOfWeekKind enumeration
The kind of day to be included in a regular schedule.
Table 130 shows all literals of DayOfWeekKind.
[bookmark: _Ref163564690][bookmark: _Toc163565281]Table 130 – Literals of SteadyStateHypothesisScheduleProfile::DayOfWeekKind
	literal
	value
	description

	[bookmark: UML10381]monday
	
	Monday as the day of the week.

	[bookmark: UML10382]tuesday
	
	Tuesday as the day of the week.

	[bookmark: UML10383]wednesday
	
	Wednesday as the day of the week.

	[bookmark: UML10384]thursday
	
	Thursday as the day of the week.

	[bookmark: UML10385]friday
	
	Friday as the day of the week.

	[bookmark: UML10386]saturday
	
	Saturday as the day of the week.

	[bookmark: UML10387]sunday
	
	Sunday as the day of the week.

	[bookmark: UML10388]weekday
	
	A day of the week other than Sunday or Saturday.

	[bookmark: UML10389]weekend
	
	A day of the week which is Sunday or Saturday.

	[bookmark: UML10390]all
	
	All days of the week.

	[bookmark: UML10391]holiday
	
	

	[bookmark: UML10392]bridgeDay
	
	A day that is a gap between two distinguished days e.g holiday and weekend that leads to an abnormal scheduling behavior. e.g. if Ascension day falls on a Thursday, then Friday would be a bridge day due to the schedule will not have a normal Friday consumption and production.

[bookmark: UML1571][bookmark: _Toc163565128]Integer primitive
An integer number. The range is unspecified and not limited.
[bookmark: UML1572][bookmark: _Toc163565129]BatteryStateKind enumeration
The state of the battery unit.
Table 131 shows all literals of BatteryStateKind.
[bookmark: _Ref163564691][bookmark: _Toc163565282]Table 131 – Literals of SteadyStateHypothesisScheduleProfile::BatteryStateKind
	literal
	value
	description

	[bookmark: UML10393]discharging
	
	Stored energy is decreasing.

	[bookmark: UML10394]full
	
	Unable to charge, and not discharging.

	[bookmark: UML10395]waiting
	
	Neither charging nor discharging, but able to do so.

	[bookmark: UML10396]charging
	
	Stored energy is increasing.

	[bookmark: UML10397]empty
	
	Unable to discharge, and not charging.

[bookmark: UML1573][bookmark: _Toc163565130]RealEnergy datatype
Real electrical energy.
Table 132 shows all attributes of RealEnergy.
[bookmark: _Ref163564692][bookmark: _Toc163565283]Table 132 – Attributes of SteadyStateHypothesisScheduleProfile::RealEnergy
	name
	mult
	type
	description

	multiplier
	0..1
	UnitMultiplier
	(const=M)

	unit
	0..1
	UnitSymbol
	(const=Wh)

	value
	0..1
	Float
	

[bookmark: UML1574][bookmark: _Toc163565131]CsOperatingModeKind enumeration
Operating mode for HVDC line operating as Current Source Converter.
Table 133 shows all literals of CsOperatingModeKind.
[bookmark: _Ref163564693][bookmark: _Toc163565284]Table 133 – Literals of SteadyStateHypothesisScheduleProfile::CsOperatingModeKind
	literal
	value
	description

	[bookmark: UML10398]inverter
	
	Operating as inverter, which is the power receiving end.

	[bookmark: UML10399]rectifier
	
	Operating as rectifier, which is the power sending end.

[bookmark: UML1575][bookmark: _Toc163565132]CsPpccControlKind enumeration
Active power control modes for HVDC line operating as Current Source Converter.
Table 134 shows all literals of CsPpccControlKind.
[bookmark: _Ref163564694][bookmark: _Toc163565285]Table 134 – Literals of SteadyStateHypothesisScheduleProfile::CsPpccControlKind
	literal
	value
	description

	[bookmark: UML10400]activePower
	
	Control is active power control at AC side, at point of common coupling. Target is provided by ACDCConverter.targetPpcc.

	[bookmark: UML10401]dcVoltage
	
	Control is DC voltage with target value provided by ACDCConverter.targetUdc.

	[bookmark: UML10402]dcCurrent
	
	Control is DC current with target value provided by CsConverter.targetIdc.

[bookmark: UML1576][bookmark: _Toc163565133]AngleDegrees datatype
Measurement of angle in degrees.
Table 135 shows all attributes of AngleDegrees.
[bookmark: _Ref163564695][bookmark: _Toc163565286]Table 135 – Attributes of SteadyStateHypothesisScheduleProfile::AngleDegrees
	name
	mult
	type
	description

	value
	0..1
	Float
	

	unit
	0..1
	UnitSymbol
	(const=deg)

	multiplier
	0..1
	UnitMultiplier
	(const=none)

[bookmark: UML1577][bookmark: _Toc163565134]CurrentFlow datatype
Electrical current with sign convention: positive flow is out of the conducting equipment into the connectivity node. Can be both AC and DC.
Table 136 shows all attributes of CurrentFlow.
[bookmark: _Ref163564696][bookmark: _Toc163565287]Table 136 – Attributes of SteadyStateHypothesisScheduleProfile::CurrentFlow
	name
	mult
	type
	description

	value
	0..1
	Float
	

	multiplier
	0..1
	UnitMultiplier
	(const=none)

	unit
	0..1
	UnitSymbol
	(const=A)

[bookmark: UML1578][bookmark: _Toc163565135]Boolean primitive
A type with the value space "true" and "false".
[bookmark: UML1579][bookmark: _Toc163565136](NC) PeakKind enumeration

Table 137 shows all literals of PeakKind.
[bookmark: _Ref163564697][bookmark: _Toc163565288]Table 137 – Literals of SteadyStateHypothesisScheduleProfile::PeakKind
	literal
	value
	description

	[bookmark: UML10403]offPeak
	
	Off-peak refer to periods of lower demand for a particular service or commodity.

	[bookmark: UML10404]onPeak
	
	Off-peak refer to periods of higher demand for a particular service or commodity.

[bookmark: UML1580][bookmark: _Toc163565137](NC) EnergyDemandKind enumeration
Kind of energy demand.
Table 138 shows all literals of EnergyDemandKind.
[bookmark: _Ref163564698][bookmark: _Toc163565289]Table 138 – Literals of SteadyStateHypothesisScheduleProfile::EnergyDemandKind
	literal
	value
	description

	[bookmark: UML10405]consumption
	
	

	[bookmark: UML10406]production
	
	

	[bookmark: UML10407]storage
	
	

	[bookmark: UML10408]export
	
	

	[bookmark: UML10409]import
	
	

[bookmark: UML1581][bookmark: _Toc163565138]String primitive
A string consisting of a sequence of characters. The character encoding is UTF-8. The string length is unspecified and unlimited.
[bookmark: UML1582][bookmark: _Toc163565139]Time primitive
Time as "hh:mm:ss.sss", which conforms with ISO 8601. UTC time zone is specified as "hh:mm:ss.sssZ". A local timezone relative UTC is specified as "hh:mm:ss.sss±hh:mm". The second component (shown here as "ss.sss") could have any number of digits in its fractional part to allow any kind of precision beyond seconds.
[bookmark: UML1583][bookmark: _Toc163565140]SynchronousMachineOperatingMode enumeration
Synchronous machine operating mode.
Table 139 shows all literals of SynchronousMachineOperatingMode.
[bookmark: _Ref163564699][bookmark: _Toc163565290]Table 139 – Literals of SteadyStateHypothesisScheduleProfile::SynchronousMachineOperatingMode
	literal
	value
	description

	[bookmark: UML10410]generator
	
	Operating as generator.

	[bookmark: UML10411]condenser
	
	Operating as condenser.

	[bookmark: UML10412]motor
	
	Operating as motor.

[bookmark: UML1584][bookmark: _Toc163565141]PU datatype
Per Unit - a positive or negative value referred to a defined base. Values typically range from -10 to +10.
Table 140 shows all attributes of PU.
[bookmark: _Ref163564700][bookmark: _Toc163565291]Table 140 – Attributes of SteadyStateHypothesisScheduleProfile::PU
	name
	mult
	type
	description

	value
	0..1
	Float
	

	unit
	0..1
	UnitSymbol
	(const=none)

	multiplier
	0..1
	UnitMultiplier
	(const=none)

[bookmark: UML1585][bookmark: _Toc163565142]Resistance datatype
Resistance (real part of impedance).
Table 141 shows all attributes of Resistance.
[bookmark: _Ref163564701][bookmark: _Toc163565292]Table 141 – Attributes of SteadyStateHypothesisScheduleProfile::Resistance
	name
	mult
	type
	description

	value
	0..1
	Float
	

	unit
	0..1
	UnitSymbol
	(const=ohm)

	multiplier
	0..1
	UnitMultiplier
	(const=none)

[bookmark: UML1586][bookmark: _Toc163565143]VsPpccControlKind enumeration
Types applicable to the control of real power and/or DC voltage by voltage source converter.
Table 142 shows all literals of VsPpccControlKind.
[bookmark: _Ref163564702][bookmark: _Toc163565293]Table 142 – Literals of SteadyStateHypothesisScheduleProfile::VsPpccControlKind
	literal
	value
	description

	[bookmark: UML10413]pPcc
	
	Control is real power at point of common coupling. The target value is provided by ACDCConverter.targetPpcc.

	[bookmark: UML10414]udc
	
	Control is DC voltage with target value provided by ACDCConverter.targetUdc.

	[bookmark: UML10415]pPccAndUdcDroop
	
	Control is active power at point of common coupling and local DC voltage, with the droop. Target values are provided by ACDCConverter.targetPpcc, ACDCConverter.targetUdc and VsConverter.droop.

	[bookmark: UML10416]pPccAndUdcDroopWithCompensation
	
	Control is active power at point of common coupling and compensated DC voltage, with the droop. Compensation factor is the resistance, as an approximation of the DC voltage of a common (real or virtual) node in the DC network. Targets are provided by ACDCConverter.targetPpcc, ACDCConverter.targetUdc, VsConverter.droop and VsConverter.droopCompensation.

	[bookmark: UML10417]pPccAndUdcDroopPilot
	
	Control is active power at point of common coupling and the pilot DC voltage, with the droop. The mode is used for Multi Terminal High Voltage DC (MTDC) systems where multiple HVDC Substations are connected to the HVDC transmission lines. The pilot voltage is then used to coordinate the control the DC voltage across the HVDC substations. Targets are provided by ACDCConverter.targetPpcc, ACDCConverter.targetUdc and VsConverter.droop.

	[bookmark: UML10418]phasePcc
	
	Control is phase at point of common coupling. Target is provided by VsConverter.targetPhasePcc.

[bookmark: UML1587][bookmark: _Toc163565144]VsQpccControlKind enumeration
Kind of reactive power control at point of common coupling for a voltage source converter.
Table 143 shows all literals of VsQpccControlKind.
[bookmark: _Ref163564703][bookmark: _Toc163565294]Table 143 – Literals of SteadyStateHypothesisScheduleProfile::VsQpccControlKind
	literal
	value
	description

	[bookmark: UML10419]reactivePcc
	
	Control is reactive power at point of common coupling. Target is provided by VsConverter.targetQpcc.

	[bookmark: UML10420]voltagePcc
	
	Control is voltage at point of common coupling. Target is provided by VsConverter.targetUpcc.

	[bookmark: UML10421]powerFactorPcc
	
	Control is power factor at point of common coupling. Target is provided by VsConverter.targetPowerFactorPcc.

	[bookmark: UML10422]pulseWidthModulation
	
	No explicit control. Pulse-modulation factor is directly set in magnitude (VsConverter.targetPWMfactor) and phase (VsConverter.targetPhasePcc).

[bookmark: UML1588][bookmark: _Toc163565145]PerCent datatype
Percentage on a defined base. For example, specify as 100 to indicate at the defined base.
Table 144 shows all attributes of PerCent.
[bookmark: _Ref163564704][bookmark: _Toc163565295]Table 144 – Attributes of SteadyStateHypothesisScheduleProfile::PerCent
	name
	mult
	type
	description

	value
	0..1
	Float
	Normally 0 to 100 on a defined base.

	unit
	0..1
	UnitSymbol
	(const=none)

	multiplier
	0..1
	UnitMultiplier
	(const=none)

[bookmark: _Toc163565146] (informative): Sample data
[bookmark: _Toc163565147]General
[bookmark: _Hlk65319795]This Annex is designed to illustrate the profile by using fragments of sample data. It is not meant to be a complete set of examples covering all possibilities of using the profile. Defining a complete set of test data is considered a separate activity to be performed for the purpose of setting up interoperability testing and conformity related to this profile.
[bookmark: _Toc163565148]Sample instance data
Test data files are available in the CIM EG SharePoint.

ENTSO-E | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e

	– Page 85 of 86 –	ENTSO-E | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e

image1.png

image2.png

image3.png
class Core /

Identifiedobject

+ desaription: String [0..1]
+ mRID: String
+ name: String

image4.png
entso@

Reliable Sustainable Connected

